Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'MRI scan' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'MRI scan' found in 1 term [] and 72 definitions []
previous     51 - 55 (of 73)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15]
Searchterm 'MRI scan' was also found in the following services: 
spacer
News  (319)  Resources  (55)  Forum  (21)  
 
Magnetic ForcesMRI Resource Directory:
 - MRI Accidents -
 
Forces can result from the interaction of magnetic fields. Pulsed magnetic field gradients can interact with the main magnetic field during the MRI scan, to produce acoustic noise through the gradient coil.
Magnetic fields attract ferromagnetic objects with forces, which can be a lethal danger if one is hit by an unrestrained object in flight. One could also be trapped between the magnet and a large unrestrained ferromagnetic object or the object could damage the MRI machine.
Access control and personnel awareness are the best preventions of such accidents. The attraction mechanism for ferromagnetic objects is that the magnetic field magnetizes the iron. This induced magnetization reacts with the gradient of the magnetic field to produce an attraction toward the strongest area of the field. The details of this interaction are very dependent on the shape and composition of the attracted object. There is a very rapid increase of force as one approaches a magnet. There is also a torque or twisting force on objects, e.g. a long cylinder (such as a pen or an intracranial aneurysm clip) will tend to align along the magnet's field lines. The torque increases with field strength while the attraction increases with field gradient.
Depending on the magnetic saturation of the object, attraction is roughly proportional to object mass. Motion of conducting objects in magnetic fields can induce eddy currents that can have the effect of opposing the motion.

See also Duty Cycle.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
spacer
• For this and other aspects of MRI safety see our InfoSheet about MRI Safety.
• Patient-related information is collected in our MRI Patient Information.

 
Further Reading:
  Basics:
How strong are magnets?
   by my.execpc.com    
Magnetic Field of the Strongest Magnet
2003   by hypertextbook.com    
  News & More:
Imaging chain faces regulators after inmate, guard get stuck to MRI machine
Friday, 1 December 2023   by healthimaging.com    
Measuring magnetic force field distributions in microfluidic devices: Experimental and numerical approaches
Saturday, 2 December 2023   by analyticalsciencejournals.onlinelibrary.wiley.com    
Two stuck to MRI machine for 4 hrs
Tuesday, 11 November 2014   by www.mumbaimirror.com    
New imaging project for new applications in cancer diagnostics
Monday, 27 March 2017   by www.news-medical.net    
Searchterm 'MRI scan' was also found in the following services: 
spacer
Ultrasound  (1) Open this link in a new window
Magnetism
 
Magnetic forces are fundamental forces that arise due to the movement of electrical charge. Maxwell's equations describe the origin and behavior of the fields that govern these forces. Thus, magnetism is seen whenever electrically charged particles are in motion. This can arise either from movement of electrons in an electric current, resulting in 'electromagnetism', or from the quantum-mechanical orbital motion (there is no orbital motion of electrons around the nucleus like planets around the sun, but there is an 'effective electron velocity') and spin of electrons, resulting in what are known as 'permanent magnets'.
The physical cause of the magnetism of objects, as distinct from electrical currents, is the atomic magnetic dipole. Magnetic dipoles, or magnetic moments, result on the atomic scale from the two kinds of movement of electrons. The first is the orbital motion of the electron around the nucleus this motion can be considered as a current loop, resulting in an orbital dipole magnetic moment along the axis of the nucleus. The second, much stronger, source of electronic magnetic moment is due to a quantum mechanical property called the spin dipole magnetic moment.
Gauss (G) and tesla (T) are units to define the intensity of magnetic fields. One tesla is equivalent to 10 000 gauss.
Typically, the field strength of MRI scanners is between 0.15 T and 3 T.

See also Diamagnetism, Paramagnetism, Superparamagnetism, and Ferromagnetism.
spacer

• View the DATABASE results for 'Magnetism' (18).Open this link in a new window


• View the NEWS results for 'Magnetism' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Magnet basics
   by my.execpc.com    
  News & More:
What affects the strength of a magnet?
   by my.execpc.com    
MRI Safety Resources 
Nerve Stimulator - Implant and Prosthesis pool - Shielding - Guidance - Pacemaker
 
Magnevist® EnteralInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Magnevist® enteral (Gadopentetate) is a Gd-DTPA solution for use as a gastrointestinal contrast agent to visualize the bowel in MRI scans.

See also Positive Oral Contrast Agents and Gadopentetate Gastrointestinal.
Drug Information and Specification
CENTRAL MOIETY
Gd3+
CONTRAST EFFECT
T1, Predominantly positive enhancement
Paramagnetic
PHARMACOKINETIC
Gastrointestinal
CONCENTRATION
0.001 mol/L
DOSAGE
100 ml oral
PREPARATION
Finished product
INDICATION
Bowel marking
DEVELOPMENT STAGE
For sale
DISTRIBUTOR
See below
PRESENTATION
Vial of 100 mL
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
TRADE NAME
DEVELOPMENT
STAGE
DISTRIBUTOR
USA
Magnevist® enteral
for sale
EU
Magnevist® enteral
for sale
spacer

• View the DATABASE results for 'Magnevist® Enteral' (3).Open this link in a new window

Searchterm 'MRI scan' was also found in the following services: 
spacer
News  (319)  Resources  (55)  Forum  (21)  
 
Medical Imaging
 
The definition of imaging is the visual representation of an object. Medical imaging began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette. The next development involved the use of fluorescent screens and special glasses to see x-ray images in real time.
A major development was the application of contrast agents for a better image contrast and organ visualization. In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This medical imaging technology allows information of biologic processes in vivo. Today, PET and SPECT play an important role in both clinical research and diagnosis of biochemical and physiologic processes. In 1955, the first x-ray image intensifier allowed the pick up and display of x-ray movies.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasonic waves generated by a quartz crystal are reflected at the interfaces between different tissues, received by the ultrasound machine, and turned into pictures with the use of computers and reconstruction software. Ultrasound imaging is an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast agents, real-time 3D ultrasound imaging, and molecular imaging.
Digital imaging techniques were implemented in the 1970s into conventional fluoroscopic image intensifier and by Godfrey Hounsfield with the first computed tomography. Digital images are electronic snapshots sampled and mapped as a grid of dots or pixels. The introduction of x-ray CT revolutionised medical imaging with cross sectional images of the human body and high contrast between different types of soft tissue. These developments were made possible by analog to digital converters and computers. The multislice spiral CT technology has expands the clinical applications dramatically.
The first MRI devices were tested on clinical patients in 1980. The spread of CT machines is the spur to the rapid development of MRI imaging and the introduction of tomographic imaging techniques into diagnostic nuclear medicine. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.
Today, imaging in medicine has advanced to a stage that was inconceivable 100 years ago, with growing medical imaging modalities:
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)

All this type of scans are an integral part of modern healthcare. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in picture archiving and communication systems (PACS). In telemedicine, healthcare professionals are linked over a computer network. Using cutting-edge computing and communications technologies, in videoconferences, where audio and visual images are transmitted in real time, medical images of MRI scans, x-ray examinations, CT scans and other pictures are shareable.
See also Hybrid Imaging.

See also the related poll results: 'In 2010 your scanner will probably work with a field strength of', 'MRI will have replaced 50% of x-ray exams by'
Radiology-tip.comradDiagnostic Imaging
spacer
Medical-Ultrasound-Imaging.comMedical Imaging
spacer

• View the DATABASE results for 'Medical Imaging' (20).Open this link in a new window


• View the NEWS results for 'Medical Imaging' (81).Open this link in a new window.
 
Further Reading:
  Basics:
Image Characteristics and Quality
   by www.sprawls.org    
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
Medical imaging shows cost control problem
Tuesday, 6 November 2012   by www.mysanantonio.com    
  News & More:
iMPI: An Exploration of Post-Launch Advancements
Friday, 29 September 2023   by www.diagnosticimaging.com    
Advances in medical imaging enable visualization of white matter tracts in fetuses
Wednesday, 12 May 2021   by www.eurekalert.or    
Positron Emission Tomographic Imaging in Stroke
Monday, 28 December 2015   by www.ncbi.nlm.nih.gov    
Multiparametric MRI for Detecting Prostate Cancer
Wednesday, 17 December 2014   by www.onclive.com    
Combination of MRI and PET imaging techniques can prevent second breast biopsy
Sunday, 29 June 2014   by www.news-medical.net    
3D-DOCTOR Tutorial
   by www.ablesw.com    
Searchterm 'MRI scan' was also found in the following services: 
spacer
Ultrasound  (1) Open this link in a new window
Metal ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Metal, susceptibility
DESCRIPTION
Signal dropout, bright spots
REASON
HELP
Remove the metal
Ferromagnetic metal will cause a magnetic field inhomogeneity, which in turn causes a local signal void, often accompanied by an area of high signal intensity, as well as a distortion of the image. They create their own magnetic field and dramatically alter precession frequencies of protons in the adjacent tissues. Tissues adjacent to ferromagnetic components become influenced by the induced magnetic field of the metal hardware rather than the parent field and, therefore, either fail to precess or do so at a different frequency and hence do not generate useful signal. Two components contribute to susceptibility artifact, induced magnetism in the ferromagnetic component itself and induced magnetism in protons adjacent to the component.
Artifacts from metal may have varied appearances on MRI scans due to different type of metal or configuration of the piece of metal. The biocompatibility of metallic alloys, stainless steel, cobalt chrome and titanium alloy is based on the presence of a constituent element within the alloy that has the ability to form an adherent oxide coating that is stable, chemically inert and hence biocompatible. In relation to imaging titanium alloys are less ferromagnetic than both cobalt and stainless steel, induce less susceptibility artifact and result in less marked image degradation.
mri safety guidance
Image Guidance
Remove the metal when possible or take a not so sensitive sequence (a SE or another sequence with a rephasing 180° pulse).

See also Susceptibility Artifact.
spacer

• View the DATABASE results for 'Metal Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
Metal-Induced Artifacts in MRI
   by www.ajronline.org    
Metal Artefact Reduction
Thursday, 9 June 2011   by www.revisemri.com    
  News & More:
Multiacquisition with variable resonance image combination T2 (MAVRIC SL T2) for postoperative cervical spine with artificial disc replacement
Friday, 11 November 2022   by www.nature.com    
Modeling of Active Shimming of Metallic Needles for Interventional MRI
Monday, 29 June 2020   by pubmed.ncbi.nlm.nih.gov    
MRI Resources 
Jobs - Education - Examinations - Coils - MRI Centers - Homepages
 
previous      51 - 55 (of 73)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]