| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | | | | Searchterm 'Magnetization' was also found in the following services: | | | | |
| | |
| |
|
In MR, saturation is a nonequilibrium state with no net magnetization. The same amount of nuclear spins is aligned against and with the magnetic field. Saturation methods like FatSat, SPIR etc., work with a frequency selective saturation pulse for a specific chemical shift applied before the actual sequence starts. This saturation pulse adjusts the magnetization from tissue components to zero. The hydrogen nuclei of fat and water resonate at different frequencies, which makes it possible to excite just the fat with repeatedly applying RF pulses at the Larmor frequency with interpulse times compared to T1. The resulting signal is then destroyed with a gradient pulse ( Spoiler Gradient Pulse). Fat is the chemical compound to be saturated at a fat saturation sequence. When the actual sequence follows, (e.g., a spin echo sequence) the unwanted suppressed component will not resonate.
See also Saturation Recovery. | | | | | | | | | |
| | | Searchterm 'Magnetization' was also found in the following service: | | | | |
| | |
| |
|
Signal intensity interpretation in MR imaging has a major problem.
Often there is no intuitive approach to signal behavior as signal intensity is a very complicated function of the contrast-determining tissue parameter, proton density, T1 and T2, and the machine parameters TR and TE. For this reason, the terms T1 weighted image, T2 weighted image and proton density weighted image were introduced into clinical MR imaging.
Air and bone produce low-intensity, weaker signals with darker images. Fat and marrow produce high-intensity signals with brighter images.
The signal intensity measured is related to the square of the xy- magnetization, which in a SE pulse sequence is given by
Mxy = Mxy0(1-exp(-TR/T1)) exp(-TE/T2) (1)
where Mxy0 = Mz0 is proportional to the proton or spin density, and corresponds to the z- magnetization present at zero time of the experiment when it is tilted into the xy-plane. See also T2 Weighted Image and Ernst Angle. | | | | • View the DATABASE results for 'Signal Intensity' (56).
| | | • View the NEWS results for 'Signal Intensity' (1).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
(N) The SI units is moles/m 3.
Definition: The concentration of nuclei in tissue processing at the Larmor frequency in a given region; one of the principal determinants of the strength of the NMR signal from the region.
For water, there are about 1.1 x 105 moles of hydrogen per m 3, or 0.11 moles of hydrogen/cm 3. The signal intensity measured is related to the square of the xy- magnetization, which in a SE pulse sequence is given by
Mxy = Mxy0(1-exp(-TR/T1)) exp(-TE/T2)
where Mxy0 = Mz0 is proportional to the proton or spin density, and corresponds to the z- magnetization present at zero time of the experiment when it is tilted into the xy-plane.
True spin density is not imaged directly, but must be calculated from signals received with different interpulse times. The spin density contrast can be generated by using a long TR and sampling the data immediately after the RF pulse (with a TE as short as possible). | | | | • View the DATABASE results for 'Spin Density' (9).
| | | • View the NEWS results for 'Spin Density' (1).
| | | | Further Reading: | Basics:
|
|
| |
| | | Searchterm 'Magnetization' was also found in the following services: | | | | |
| | |
| |
|
Spoiled gradient echo sequences use a spoiler gradient on the slice select axis during the end module to destroy any remaining transverse magnetization after the readout gradient, which is the case for short repetition times.
As a result, only z- magnetization remains during a subsequent excitation. This types of sequences use semi-random changes in the phase of radio frequency pulses to produce a spatially independent phase shift.
Companies use different acronyms to describe certain techniques.
Different terms for these gradient echo pulse sequences:
CE-FFE-T1 Contrast Enhanced Fast Field Echo with T1 Weighting,
GFE Gradient Field Echo,
FLASH Fast Low Angle Shot,
PS Partial Saturation,
RF spoiled FAST RF Spoiled Fourier Acquired Steady State Technique,
RSSARGE Radio Frequency Spoiled Steady State Acquisition Rewound Gradient Echo
S-GRE Spoiled Gradient Echo,
SHORT Short Repetition Techniques,
SPGR Spoiled Gradient Recalled (spoiled GRASS),
STAGE T1W T1 weighted Small Tip Angle Gradient Echo,
T1-FAST T1 weighted Fourier Acquired Steady State Technique,
T1-FFE T1 weighted Fast Field Echo.
In this context, 'contrast enhanced' refers to the pulse sequence, it does not mean enhancement with a contrast agent. | | | | • View the DATABASE results for 'Spoiled Gradient Echo Sequence' (11).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Magnetization' was also found in the following service: | | | | |
| | |
| |
|
| | | | • View the DATABASE results for 'Superparamagnetism' (6).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |