Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Molecular Imaging' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Molecular Imaging' found in 1 term [] and 10 definitions [], (+ 9 Boolean[] results
previous     11 - 15 (of 20)     next
Result Pages : [1]  [2 3]  [4]
Searchterm 'Molecular Imaging' was also found in the following services: 
spacer
News  (30)  Resources  (6)  
 
Monoclonal AntibodiesInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(McAb) Monoclonal antibodies are used for tumor detection and localization in nuclear medicine. In MRI, monoclonal antibodies labeled with paramagnetic or superparamagnetic particles are being studied for targeting tumors, for example contrast agent containing gadolinium attached to a targeting antibody. The antibody would bind to a specific target (e.g., a metastatic melanoma cell) while the gadolinium would increase the MRI signal. Further developments are MRI contrast agents that specifically target glucose receptors on tumor cells; coupled with the high spatial resolution of high field MRI devices, these agents have potentials to detect small tumor foci.
The monoclonal antibody manufacturers produce a wide variety of ligands, which can be directed against a multiplicity of pathologic molecular targets. MRI enhanced with targeted contrast agents can be used for molecular imaging.
spacer
 
Further Reading:
  News & More:
Measuring mAbs with magnetic resonance can help regulatory testing
Thursday, 23 April 2015   by www.biopharma-reporter.com    
Repligen - Eyeing Sustainable Profitability
Monday, 31 October 2011   by www.rttnews.com    
Searchterm 'Molecular Imaging' was also found in the following services: 
spacer
Radiology  (1) Open this link in a new windowUltrasound  (3) Open this link in a new window
Magnetization Transfer
 
(MT) Magnetization Transfer was accidentally discovered by Wolff and Balaban in 1989. Conventional MRI is based on the differences in T1, T2 and the proton density (water content and the mobility of water molecules) in tissue; it relies primarily on free (bulk) water protons. The T2 relaxation times are greater than 10 ms and detectable. The T2 relaxation times of protons associated with macromolecules are less then 1 ms and not detectable in MRI.
Magnetization Transfer Imaging (MTI) is based on the magnetization interaction (through dipolar and/or chemical exchange) between bulk water protons and macromolecular protons. By applying an off resonance radio frequency pulse to the macromolecular protons, the saturation of these protons is then transferred to the bulk water protons. The result is a decrease in signal (the net magnetization of visible protons is reduced), depending on the magnitude of MT between tissue macromolecules and bulk water. With MTI, the presence or absence of macromolecules (e.g. in membranes, brain tissue) can be seen.
The magnetization transfer ratio (MTR) is the difference in signal intensity with or without MT.

See also Magnetization Transfer Contrast.
spacer

• View the DATABASE results for 'Magnetization Transfer' (7).Open this link in a new window

 
Further Reading:
  Basics:
MICRO-STRUCTURAL QUANTITIES - DIFFUSION, MAGNETISATION DECAY, MAGNETISATION TRANSFER AND PERMEABILITY(.pdf)
   by www.dundee.ac.uk    
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
Gold-manganese nanoparticles for targeted diagnostic and imaging
Thursday, 12 November 2015   by www.nanowerk.com    
Magnetization Transfer Magnetic Resonance Imaging of Hepatic Tumors(.pdf)
   by www.nci.edu.eg    
MRI Resources 
Veterinary MRI - Jobs pool - Functional MRI - Breast Implant - Claustrophobia - Education
 
Magnetization Transfer Contrast
 
(MTC) This MRI method increases the contrast by removing a portion of the total signal in tissue. An off resonance radio frequency (RF) pulse saturates macromolecular protons to make them invisible (caused by their ultra-short T2* relaxation times). The MRI signal from semi-solid tissue like brain parenchyma is reduced, and the signal from a more fluid component like blood is retained.
E.g., saturation of broad spectral lines may produce decreases in intensity of lines not directly saturated, through exchange of magnetization between the corresponding states; more closely coupled states will show a greater resulting intensity change. Magnetization transfer techniques make demyelinated brain or spine lesions (as seen e.g. in multiple sclerosis) better visible on T2 weighted images as well as on gadolinium contrast enhanced T1 weighted images.
Off resonance makes use of a selection gradient during an off resonance MTC pulse. The gradient has a negative offset frequency on the arterial side of the imaging volume (caudally more off resonant and cranially less off resonant). The net effect of this type of pulse is that the arterial blood outside the imaging volume will retain more of its longitudinal magnetization, with more vascular signal when it enters the imaging volume. Off resonance MTC saturates the venous blood, leaving the arterial blood untouched.
On resonance has no effect on the free water pool but will saturate the bound water pool and is the difference in T2 between the pools. Special binomial pulses are transmitted causing the magnetization of the free protons to remain unchanged. The z-magnetization returns to its original value. The spins of the bound pool with a short T2 experience decay, resulting in a destroyed magnetization after the on resonance pulse.

See also Magnetization Transfer.
spacer

• View the DATABASE results for 'Magnetization Transfer Contrast' (5).Open this link in a new window

 
Further Reading:
  News & More:
MRI of the Human Eye Using Magnetization Transfer Contrast Enhancement
   by www.iovs.org    
Searchterm 'Molecular Imaging' was also found in the following services: 
spacer
News  (30)  Resources  (6)  
 
Clariscan™InfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
An iron-based contrast agent with large molecular size, which prevents diffusion into body tissues and will be developed for MR imaging of the liver (taken up by macrophages), tumor microvasculature and microvessel permeability. The blood half live of the particles with 11-20 nm diameter is 3-4 hours.
At this time the development of Clariscan™ is discontinued.

See also NC100150 Injection and Ultrasmall Superparamagnetic Iron Oxide.
Drug Information and Specification
NAME OF COMPOUND
Feruglose, PEG-feron, USPIO, NC100150
DEVELOPER
CENTRAL MOIETY
Fe
CONTRAST EFFECT
T2, Predominantly negative enhancement
R1=20, R2=35, B0=0.5T
PHARMACOKINETIC
Intravascular
CONCENTRATION
29.8 mg Fe/mL
PREPARATION
Suspend in an isotonic glucose solution
INDICATION
Cardiovascular
DEVELOPMENT STAGE
?
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
spacer

• View the DATABASE results for 'Clariscan™' (6).Open this link in a new window

 
Further Reading:
  News & More:
GE Healthcare expands MRI contrast media product range in Europe with launch of macrocyclic agent ClariscanTM
Wednesday, 1 March 2017   by www.businesswire.com    
GE Healthcare announces FDA approval of macrocyclic MRI contrast agent Clariscan
Monday, 4 November 2019   by www.itnonline.com    
Searchterm 'Molecular Imaging' was also found in the following services: 
spacer
Radiology  (1) Open this link in a new windowUltrasound  (3) Open this link in a new window
Contrast AgentsForum -
related threadsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Contrast agents are chemical substances introduced to the anatomical or functional region being imaged, to increase the differences between different tissues or between normal and abnormal tissue, by altering the relaxation times. MRI contrast agents are classified by the different changes in relaxation times after their injection.
•
Positive contrast agents cause a reduction in the T1 relaxation time (increased signal intensity on T1 weighted images). They (appearing bright on MRI) are typically small molecular weight compounds containing as their active element Gadolinium, Manganese, or Iron. All of these elements have unpaired electron spins in their outer shells and long relaxivities.
Some typical contrast agents as gadopentetate dimeglumine, gadoteridol, and gadoterate meglumine are utilized for the central nervous system and the complete body; mangafodipir trisodium is specially used for lesions of the liver and gadodiamide for the central nervous system.
•
Negative contrast agents (appearing predominantly dark on MRI) are small particulate aggregates often termed superparamagnetic iron oxide (SPIO). These agents produce predominantly spin spin relaxation effects (local field inhomogeneities), which results in shorter T1 and T2 relaxation times.
SPIO's and ultrasmall superparamagnetic iron oxides (USPIO) usually consist of a crystalline iron oxide core containing thousands of iron atoms and a shell of polymer, dextran, polyethyleneglycol, and produce very high T2 relaxivities. USPIOs smaller than 300 nm cause a substantial T1 relaxation. T2 weighted effects are predominant.
•
A special group of negative contrast agents (appearing dark on MRI) are perfluorocarbons (perfluorochemicals), because their presence excludes the hydrogen atoms responsible for the signal in MR imaging.

The design objectives for the next generation of MR contrast agents will likely focus on prolonging intravascular retention, improving tissue targeting, and accessing new contrast mechanisms. Macromolecular paramagnetic contrast agents are being tested worldwide. Preclinical data shows that these agents demonstrate great promise for improving the quality of MR angiography, and in quantificating capillary permeability and myocardial perfusion.
Ultrasmall superparamagnetic iron oxide (USPIO) particles have been evaluated in multicenter clinical trials for lymph node MR imaging and MR angiography, with the clinical impact under discussion. In addition, a wide variety of vector and carrier molecules, including antibodies, peptides, proteins, polysaccharides, liposomes, and cells have been developed to deliver magnetic labels to specific sites. Technical advances in MR imaging will further increase the efficacy and necessity of tissue-specific MRI contrast agents.

See also Adverse Reaction and Nephrogenic Systemic Fibrosis.

See also the related poll result: 'The development of contrast agents in MRI is'
 
Images, Movies, Sliders:
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradContrast Agents,  Safety of Contrast Agents
spacer
Medical-Ultrasound-Imaging.comUltrasound Contrast Agents,  Ultrasound Contrast Agent Safety
spacer

• View the DATABASE results for 'Contrast Agents' (122).Open this link in a new window


• View the NEWS results for 'Contrast Agents' (25).Open this link in a new window.
 
Further Reading:
  Basics:
Analysis of MRI contrast agents
Thursday, 17 November 2022   by www.sciencedaily.com    
New guidelines urge caution on use of contrast agents during MR scans
Tuesday, 8 August 2017   by www.dotmed.com    
New Study Sheds Light on Safety of Gadolinium-Based Contrast Agents
Wednesday, 29 November 2017   by www.empr.com    
A safer approach for diagnostic medical imaging
Monday, 29 September 2014   by www.eurekalert.org    
Manganese-based MRI contrast agents: past, present and future
Friday, 4 November 2011   by www.ncbi.nlm.nih.gov    
  News & More:
Brain imaging method may aid mild traumatic brain injury diagnosis
Tuesday, 16 January 2024   by parkinsonsnewstoday.com    
A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors
Thursday, 18 January 2024   by www.dovepress.com    
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging
Tuesday, 27 September 2022   by www.pharmacytimes.com    
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol
Saturday, 5 February 2022   by www.ncbi.nlm.nih.gov    
Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles
Tuesday, 11 January 2022   by pubmed.ncbi.nlm.nih.gov    
Manganese enhanced MRI provides more accurate details of heart function after a heart attack
Tuesday, 11 May 2021   by www.news-medical.net    
Gadopiclenol: positive results for Phase III clinical trials
Monday, 29 March 2021   by www.pharmiweb.co    
Gadolinium-Based Contrast Agents Hypersensitivity: A Case Series
Friday, 4 December 2020   by www.dovepress.com    
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR
Monday, 8 March 2021   by www.diagnosticimaging.com    
Water-based non-toxic MRI contrast agents
Monday, 11 May 2020   by chemistrycommunity.nature.com    
New method to detect early-stage cancer identified by Georgia State, Emory research team
Friday, 7 February 2020   by www.eurekalert.org    
Researchers Brighten Path for Creating New Type of MRI Contrast Agent
Friday, 7 February 2020   by www.newswise.com    
Manganese-based MRI contrast agent may be safer alternative to gadolinium-based agents
Wednesday, 15 November 2017   by www.eurekalert.org    
Sodium MRI May Show Biomarker for Migraine
Friday, 1 December 2017   by psychcentral.com    
A natural boost for MRI scans
Monday, 21 October 2013   by www.eurekalert.org    
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging
Tuesday, 28 June 2011   by scienceline.org    
MRI Resources 
Safety pool - Jobs pool - Shoulder MRI - Safety Training - Contrast Enhanced MRI - Breast Implant
 
previous      11 - 15 (of 20)     next
Result Pages : [1]  [2 3]  [4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]