| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Multi Angle Oblique' found in 1 term [] and 3 definitions [], (+ 9 Boolean[] results
| 1 - 5 (of 13) nextResult Pages : [1] [2 3] | | | | | | |
| |
|
The multi angle oblique technique gives the ability to display anatomical structures in a variety of planes from the data acquired in just one MRI scan.
This technique is useful, for example in lumbar spine MRI obtaining images of each intervertebral disc, individually oriented at a different angle, to better recognize herniation or to compare degenerative changes.
This technique is more difficult in the cervical spine MRI region because of the small vertebra and therefore a short distance between the multi angle oblique planes. In case of too short distance or overlapping slices the crosstalk (artifact) destroys the signal with reduced image quality. | | | | | • Share the entry 'Multi Angle Oblique': | | | | |
| | | | | |
| |
|
Magnetic resonance imaging ( MRI) of the spine is a noninvasive procedure to evaluate different types of tissue, including the spinal cord, vertebral disks and spaces between the vertebrae through which the nerves travel, as well as distinguish healthy tissue from diseased tissue.
The cervical, thoracic and lumbar spine MRI should be scanned in individual sections.
The scan protocol parameter like e.g. the field of view ( FOV), slice thickness and matrix are usually different for cervical, thoracic and lumbar spine MRI, but the method
is similar. The standard views in the basic spinal MRI scan to create detailed slices (cross sections) are sagittal T1 weighted and T2 weighted images over the whole body part, and transverse (e.g. multi angle oblique) over the region of interest with different pulse sequences according to the result of the sagittal slices. Additional views or different types of pulse sequences like fat suppression, fluid attenuation inversion recovery ( FLAIR) or
diffusion weighted imaging are created dependent on the indication.
Indications:
•
Neurological deficit, evidence of radiculopathy, cauda equina compression
•
Primary tumors or drop metastases
•
Infection/inflammatory disease, multiple sclerosis
•
Postoperative evaluation of lumbar spine: disk vs. scar
•
Localized back pain with no radiculopathy (leg pain)
Contrast enhanced MRI techniques delineate infections vs. malignancies, show a syrinx cavity and support to differentiate the postoperative conditions. After surgery for disk disease, significant fibrosis can occur in the spine. This scarring can mimic residual disk herniation. Magnetic resonance myelography evaluates spinal stenosis and various intervertebral discs can be imaged with multi angle oblique techniques. Cine series can be used to show true range of motion studies of parts of the spine.
Advanced open MRI devices are developed to perform positional scans in the position of pain or symptom (e.g. Upright™ MRI formerly Stand-Up MRI). | | | | | | • View the DATABASE results for 'Spine MRI' (11).
| | | • View the NEWS results for 'Spine MRI' (4).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
MRI of the lumbar spine, with its multiplanar 3 dimensional imaging capability, is currently the preferred modality for establishing a diagnosis. MRI scans and magnetic resonance myelography have many advantages compared with computed tomography and/or X-ray myelography in evaluating the lumbar spine. MR imaging scans large areas of the spine without ionizing radiation, is noninvasive, not affected by bone artifacts, provides vascular imaging capability, and makes use of safer contrast agents ( gadolinium chelate).
Due to the high level of tissue contrast resolution, nerves and discs are clearly visible. MRI is excellent for detecting degenerative disease in the spine. Lumbar spine MRI accurately shows disc disease (prolapsed disc or slipped disc), the level at which disc disease occurs, and if a disc is compressing spinal nerves. Lumbar spine MRI depicts soft tissues, including the cauda equina, spinal cord, ligaments, epidural fat, subarachnoid space, and intervertebral discs. Loss of epidural fat on T1 weighted images, loss of cerebrospinal fluid signal around the dural sac on T2 weighted images and degenerative disc disease are common features of lumbar stenosis.
Common indications for MRI of the lumbar spine:
•
Neurologic deficits, evidence of radiculopathy, acute spinal cord compression (e.g., sudden bowel/bladder disturbance)
•
Suspected systemic disorders (primary tumors, drop metastases, osteomyelitis)
•
Postoperative evaluation of lumbar spine: disk vs. scar
•
Localized back pain with no radiculopathy (leg pain)
Lumbar spine imaging requires a special spine coil. often used whole spine array coils have the advantage that patients do not need other positioning if also upper parts of the spine should be scanned. Sagittal T1 and T2 weighted FSE sequences are the standard views. With multi angle oblique techniques individually oriented transverse images of each intervertebral disc at different angles can be obtained.
See also the related poll result: ' MRI will have replaced 50% of x-ray exams by' | | | | | | • View the DATABASE results for 'Lumbar Spine MRI' (6).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Quick Overview
DESCRIPTION
Loss of signal
HELP
Overlapping prevention
The slice overlap artifact is another name for crosstalk artifact. If slices of multislice acquisitions are overlapping, the spinning nuclei belonging to more than one slice getting multiple times saturated, which leads to signal loss in this areas.
Image Guidance
| | | | | Further Reading: | Basics:
|
|
| |
| | | | | |
| |
|
From Siemens Medical Systems;
70 cm + 125 cm + 1.5T and Tim - a combination never seen before in MRI ...
MAGNETOM Espree™s unique open bore design can accommodate more types of patients than other 1.5T systems on the market today, in particular the growing population of obese patients. The power of 1.5T combined with Tim technology boosts signal to noise, which is necessary to adequately image obese patients.
Device Information and Specification
CLINICAL APPLICATION
Whole body
Body, Tim [32 x 8], Tim [76 coil elements with up to 18 RF channels])
GRE, IR, FIR, STIR, TrueIR/FISP, FSE, FLAIR, MT, SS-FSE, MT-SE, MTC, MSE, EPI, 3D DESS//CISS/PSIF, GMR
IMAGING MODES
Single, multislice, volume study, multi angle, multi oblique
Image Processor reconstructing up to 3226 images per second (256 x 256, 25% recFoV)
1024 x 1024 full screen display
| | | | • View the DATABASE results for 'MAGNETOM Espree™' (2).
| | | | Further Reading: | News & More:
|
|
| |
| | | | |
| | 1 - 5 (of 13) nextResult Pages : [1] [2 3] |
| |
|
| |
| Look Ups |
| |