| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | 'Radiology Information System' | |
Result : Searchterm 'Radiology Information System' found in 1 term [] and 2 definitions [], (+ 4 Boolean[] results
| 1 - 5 (of 7) nextResult Pages : [1] [2] | | | | Searchterm 'Radiology Information System' was also found in the following services: | | | | |
| | |
Radiology Information System | |
| |
|
(RIS) Radiology information system means a computer system that stores and processes the information for a radiology department and can be linked to the hospital information system.
The principal purpose of a RIS consists of taking over the general functions of the administration inclusive planning, monitoring and communication of all data regarding patients and its investigations in the radiology. The correct images should reach, at the correct time, the correct users. For this reason the RIS must contain a workflow management in order to simplify and steer the data flow at the individual view stations or devices (laser cameras etc.). The Radiology Information System is optimally complemented with a Picture Archiving and Communication System (PACS).
•
Collection, storage and administration of patient master data
•
Archives administration
Treatment of requirements
•
Communication (with the hospital information system, MRI scanner, other devices etc.)
| | | | | • Share the entry 'Radiology Information System': | | | | Further Reading: | Basics:
|
|
| |
| | | Searchterm 'Radiology Information System' was also found in the following services: | | | | |
| | |
| |
|
(DICOM) DICOM is the industry standard for transferral of radiologic images and other medical information between computers. Patterned after the Open System Interconnection of the International Standards Organization, DICOM enables digital communication between diagnostic and therapeutic equipment and systems from various manufacturers.
The DICOM 3.0 standard evolved from versions 1.0 (1985) and 2.0 (1988) of a standard developed by the American College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA). To support the implementation and demonstration of DICOM 3.0, the RSNA Electronic Communications Committee began to work with the ACR-NEMA MedPacs ad hoc section in 1992.
Also Picture Archiving and Communication Systems (PACS), which are connected with the Radiology Information System (RIS) use commonly the DICOM standard for the transfer and storage of medical images. | | | | • View the DATABASE results for 'Digital Imaging and Communications in Medicine' (3).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
The definition of imaging is the visual representation of an object. Medical imaging began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette. The next development involved the use of fluorescent screens and special glasses to see x-ray images in real time.
A major development was the application of contrast agents for a better image contrast and organ visualization. In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This medical imaging technology allows information of biologic processes in vivo. Today, PET and SPECT play an important role in both clinical research and diagnosis of biochemical and physiologic processes. In 1955, the first x-ray image intensifier allowed the pick up and display of x-ray movies.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasonic waves generated by a quartz crystal are reflected at the interfaces between different tissues, received by the ultrasound machine, and turned into pictures with the use of computers and reconstruction software. Ultrasound imaging is an important diagnostic tool, and there are great opportunities for its further development. Looking into the
future, the grand challenges include targeted contrast agents, real-time 3D ultrasound imaging, and molecular imaging.
Digital imaging techniques were implemented in the 1970s into conventional fluoroscopic image intensifier and by Godfrey Hounsfield with the first computed tomography. Digital images are electronic snapshots sampled and mapped as a grid of dots or pixels. The introduction of x-ray CT revolutionised medical imaging with cross sectional images of the human body and high contrast between different types of soft tissue. These developments were made possible by analog to digital converters and computers. The multislice spiral CT technology has expands the clinical applications dramatically.
The first MRI devices were tested on clinical patients in 1980. The spread of CT machines is the spur to the rapid development of MRI imaging and the introduction of tomographic imaging techniques into diagnostic nuclear medicine. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.
Today, imaging in medicine has advanced to a stage that was inconceivable 100 years ago, with growing medical imaging modalities:
•
Single photon emission computed tomography (SPECT)
•
Positron emission tomography (PET)
All this type of scans are an integral part of modern healthcare.
Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in picture archiving and communication systems (PACS).
In telemedicine, healthcare professionals are linked over a computer network. Using cutting-edge computing and communications technologies, in videoconferences, where audio and visual images are transmitted in real time, medical images of MRI scans, x-ray examinations, CT scans and other pictures are shareable.
See also Hybrid Imaging.
See also the related poll results: ' In 2010 your scanner will probably work with a field strength of', ' MRI will have replaced 50% of x-ray exams by' | | | | | | | | | • View the DATABASE results for 'Medical Imaging' (20).
| | | • View the NEWS results for 'Medical Imaging' (81).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Radiology Information System' was also found in the following services: | | | | |
| | |
| |
|
From GE Healthcare;
The Signa SP 0.5T™ is an open MRI magnet that is designed for use in interventional radiology and intra-operative imaging. The vertical gap configuration increases patient positioning options, improves patient observation, and allows continuous access to the patient during imaging.
The magnet enclosure also incorporates an intercom, patient observation video camera, laser patient alignment lights, and task lighting in the imaging volume.
Device Information and Specification CLINICAL APPLICATION Whole body Integrated transmit and receive body coil; optional rotational body coil, head; other coils optional; open architecture makes system compatible with a wide selection of coilsarray Standard: SE, IR, 2D/3D GRE and SPGR, 2D/3D TOF, 2D/3D FSE, 2D/3D FGRE and FSPGR, SSFP, FLAIR, EPI, optional: 2D/3D Fiesta, true chem sat, fat/water separation, single shot diffusion EPI IMAGING MODES Localizer, single slice, multislice, volume, fast, POMP, multi slab, cine, slice and frequency zip, extended dynamic range, tailored RF TR 1.3 to 12000 msec in increments of 1 msec TE 0.4 to 2000 msec in increments of 1 msec 2D: 1.4mm - 20mm 3D: 0.2mm - 20mm POWER REQUIREMENTS 200 - 480, 3-phase | | | | • View the DATABASE results for 'Signa SP 0.5T™ Open Configuration' (2).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Radiology Information System' was also found in the following services: | | | | |
| | |
| |
|
(Signa VH/i 3.0T)
With GE Healthcare
leading-edge technology in ultra-high-field imaging. The 3 T VH/i provides a platform for advanced applications in radiology, cardiology, psychology and psychiatry. Real-time image processing lets you acquire multislice whole brain images and map brain functions for research or surgical planning. And the 3 T Signa VH/i is flexible enough to provide clinicians with high performance they require. It can provide not only outstanding features in brain scanning and neuro- system research, but also a wide range of use in scanning breasts, extremities, the spine and the cardiovascular systems.
Device Information and Specification CLINICAL APPLICATION Whole body
T/R quadrature head, T/R quadrature body, T/R phased array extremity (opt) SE, IR, 2D/3D GRE, FGRE, RF-spoiled GRE, FSE, Angiography: 2D/3D TOF, 2D/3D phase contrast vascular IMAGING MODES Single, multislice, volume study, fast scan, multi slab, cine, localizer 100 Images/sec with Reflex100 MULTISLICE 100 Images/sec with Reflex100 2D 0.5-100mm in 0.1mm incremental 128x512 steps 32 phase encode H*W*D 260cm x 238cm x 265cm POWER REQUIREMENTS 480 or 380/415, 3 phase ||
COOLING SYSTEM TYPE Closed-loop water-cooled grad. Less than 0.14 L/hr liquid He | | | | • View the DATABASE results for 'Signa 3.0T™' (2).
| | | | |
| | | | |
| | 1 - 5 (of 7) nextResult Pages : [1] [2] |
| |
|
| |
| Look Ups |
| |