Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Real' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Real' found in 4 terms [] and 43 definitions []
previous     26 - 30 (of 47)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
Searchterm 'Real' was also found in the following services: 
spacer
News  (47)  Resources  (9)  Forum  (34)  
 
Interferogram
 
In some cases raw data are displayable. These are typically just the real part of the complex raw data, and have been scaled to emphasize the interesting details. Therefore, they cannot be successfully transformed to reproduce the displayed images, but may help to find artifacts or the reason for bad image quality.
spacer
Searchterm 'Real' was also found in the following services: 
spacer
Radiology  (9) Open this link in a new windowUltrasound  (52) Open this link in a new window
Larmor Frequency
 
The Larmor precession frequency is the rate of precession of a spin packet under the influence of a magnetic field. The frequency of an RF signal, which will cause a change in the nucleus spin energy level, is given by the Larmor equation. The frequency is determined by the gyro magnetic ratio of atoms and the strength of the magnetic field. The gyromagnetic ratio is different for each nucleus of different atoms.
The stronger the magnetic field, the higher the precessional frequency. If an RF pulse at the Larmor frequency is applied to the nucleus of an atom, the protons will alter their alignment from the direction of the main magnetic field to the direction opposite the main magnetic field. As the proton tries to realign with the main magnetic field, it will emit energy at the Larmor frequency. By varying the magnetic field across the body with a magnetic field gradient, the corresponding variation of the Larmor frequency can be used to encode the position. For protons (hydrogen nuclei), the Larmor frequency is 42.58 MHz/Tesla.

See also Larmor Equation.
spacer

• View the DATABASE results for 'Larmor Frequency' (27).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
  News & More:
Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents
Thursday, 24 December 2015   by www.ncbi.nlm.nih.gov    
MRI Resources 
Open Directory Project - Veterinary MRI - Stimulator pool - Colonography - MRI Centers - Movies
 
Longitudinal Relaxation Time
 
The T1 time constant, which determines the rate at which excited protons return to equilibrium within the lattice. The longitudinal relaxation time is a measure of the time taken for spinning protons to realign with the external magnetic field. The magnetization will grow after excitation from zero to a value of about 63% of its final value in a time of T1.

See also T1 Time.
 
Images, Movies, Sliders:
 Brain MRI Images T1  Open this link in a new window
 Sagittal Knee MRI Images T1 Weighted  Open this link in a new window
 
spacer

• View the DATABASE results for 'Longitudinal Relaxation Time' (5).Open this link in a new window

Searchterm 'Real' was also found in the following services: 
spacer
News  (47)  Resources  (9)  Forum  (34)  
 
MAGNETOM Câ„¢InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.siemens.com From Siemens Medical Systems;
A new, powerful, compact player in MRI. For both, patients and health care professionals, the mid-field has realized a giant step to cost efficient quality care. Obese patients and people with claustrophobia appreciate the comfortable side loading. The smallest pole diameter - 137 cm (54 inches) allows for optimal patient comfort.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
C-shaped open MRI
Multi channel imaging, CP Head//Neck Array Coil, Body/Spine Array Coil, large, Transmit Coil
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
SE, FLASH, FISP, IR, FIR, STIR, TrueIR/FISP, FSE, MT, SS-FSE, MT-SE, MTC, MSE, EPI, PSIF
IMAGING MODES
Single, multislice, volume study, multi angle, multi oblique
TR
Min. TR 2.81 ms
TE
Min. TE 0.98 ms
512 x 512 full screen display
MEASURING MATRIX
64 x 64 to 512 x 512
FOV
0.5 - 40 cm
MAGNET TYPE
Permanent
BORE DIAMETER
or W x H
41 cm vertical gap distance
MAGNET WEIGHT
16000 kg
H*W*D
233 x 206 x 160 cm
STRENGTH
24 mT/m
5-GAUSS FRINGE FIELD
2.2 m / 2.2 m
Passive and active
spacer

• View the DATABASE results for 'MAGNETOM C™' (2).Open this link in a new window

 
Further Reading:
  Basics:
Section 2: 510(k) Summary, MAGNETOM C! System Classification Name: Magnetic Resonance Diagnostic(.pdf)
   by www.accessdata.fda.gov    
Searchterm 'Real' was also found in the following services: 
spacer
Radiology  (9) Open this link in a new windowUltrasound  (52) Open this link in a new window
MRI RisksMRI Resource Directory:
 - Safety -
 
The subacute risks and side effects of magnetic and RF fields (for patients and staff) have been intensively examined for a long time, but there have been no long-term studies following persons who have been exposed to the static magnetic fields used in MRI. However, no permanent hazardous effects of a static magnetic field exposure upon human beings have yet been demonstrated.
Temporary possible side effects of high magnetic and RF fields:
•
Varying magnetic fields can induce so-called magnetic phosphenes that occur when an individual is subject to rapid changes of 2-5 T/s, which can produce a flashing sensation in the eyes. This temporary side effect does not seem to damage the eyes. Static field strengths used for clinical MRI examinations vary between 0.2 and 3.0 tesla;; field changes during the MRI scan vary in the dimension of mT/s. Experimental imaging units can use higher field strengths of up to 14.0 T, which are not approved for human use.
•
The Radio frequency pulses mainly produce heat, which is absorbed by the body tissue. If the power of the RF radiation is very high, the patient may be heated too much. To avoid this heating, the limit of RF exposure in MRI is up to the maximum specific absorption rate (SAR) of 4 W/kg whole body weight (can be different from country to country). For MRI safety reasons, the MRI machine starts no sequence, if the SAR limit is exceeded.
•
Very high static magnetic fields are needed to reduce the conductivity of nerves perceptibly. Augmentation of T waves is observed at fields used in standard imaging but this side effect in MRI is completely reversible upon removal from the magnet. Cardiac arrhythmia threshold is typically set to 7-10 tesla. The magnetohydrodynamic effect, which results from a voltage occurring across a vessel in a magnetic field and percolated by a saline solution such as blood, is irrelevant at the field strengths used.

The results of some animal and cellular studies suggest the possibility that electromagnetic fields may act as co-carcinogens or tumor promoters, but the data are inconclusive. Up to 45 tesla, no important effects on enzyme systems have been observed. Neither changes in enzyme kinetics, nor orientation changes in macromolecules have been conclusively demonstrated.
There are some publications associating an increase in the incidence of leukemia with the location of buildings close to high-current power lines with extremely low-frequency (ELF) electromagnetic radiation of 50-60 Hz, and industrial exposure to electric and magnetic fields but a transposition of such effects to MRI or MRS seems unlikely.
Under consideration of the MRI safety guidelines, real dangers or risks of an exposure with common MRI field strengths up to 3 tesla as well as the RF exposure during the MRI scan, are not to be expected.

For more MRI safety information see also Nerve Conductivity, Contraindications, Pregnancy and Specific Absorption Rate.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
spacer

• View the DATABASE results for 'MRI Risks' (9).Open this link in a new window


• View the NEWS results for 'MRI Risks' (3).Open this link in a new window.
 
Further Reading:
  Basics:
MRI in Patients with Implanted Devices: Current Controversies
Monday, 1 August 2016   by www.acc.org    
Working with MRI machines may cause vertigo: Study
Wednesday, 25 June 2014   by www.cos-mag.com    
Physics of MRI Safety
   by www.aapm.org    
When Your Kid Needs an MRI: Optimizing the Experience
Tuesday, 29 March 2016   by health.usnews.com    
  News & More:
How safe is 7T MRI for patients with neurosurgical implants?
Thursday, 17 November 2022   by healthimaging.com    
CT contrast reaction raises MRI contrast risk
Tuesday, 22 February 2022   by www.sciencedaily.com    
CSU study explores MRI distress and patient experience
Thursday, 7 May 2020   by www.portnews.com.au    
Noise from Magnetic Resonance Imaging Can Have Short-Term Impact on Hearing
Thursday, 22 February 2018   by www.diagnosticimaging.com    
Women with permanent make-up tattoos suffer horrific facial burns after going in for MRI scans - which create an electric current in the ink
Monday, 4 July 2016   by www.dailymail.co.uk    
FDA Dials in on MRI Safety of Passive Implantable Medical Devices
Wednesday, 24 June 2015   by www.raps.org    
MRI Resources 
Education - Calculation - Claustrophobia - MRI Reimbursement - MRI Training Courses - Artifacts
 
previous      26 - 30 (of 47)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]