Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Reconstruction Time' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Reconstruction Time' found in 1 term [] and 6 definitions [], (+ 15 Boolean[] results
previous     11 - 15 (of 22)     next
Result Pages : [1]  [2]  [3 4 5]
Searchterm 'Reconstruction Time' was also found in the following service: 
spacer
News  (1)  
 
Signa HDx 1.5T™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
www.vitalcom.com/euen/mri/products/signa-hdx-15t/index.html From GE Healthcare;
The GE Signa HDx MRI system is a whole body magnetic resonance scanner designed to support high resolution, high signal to noise ratio, and short scan times.
The 1.5T Signa HDx MR Systems is a modification of the currently marketed GE 1.5T machines, with the main difference being the change to the receive chain architecture that includes a thirty two independent receive channels, and allows for future expansion in 16 channel increments. The overall system has been improved with a simplified user interface and a single 23" liquid crystal display, improved multi channel surface coil connectivity, and an improved image reconstruction architecture known as the Volume Recon Engine (VRE).
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Compact short bore
Possible
SYNCHRONIZATION
ECG/peripheral, respiratory gating, (SmartPrep, SmartStep)
PULSE SEQUENCES
Standard: SE, IR, 2D/3D GRE and SPGR, Angiography: 2D/3D TOF, 2D/3D Phase Contrast; 2D/3D FSE, 2D/3D FGRE and FSPGR, SSFP, FLAIR, EPI, optional: 2D/3D Fiesta, FGRET, Spiral, Tensor,
IMAGING MODES
2D single slice, multi slice, and 3D volume images, multi slab, cine
1 cm to 48 cm continuous
2D 0.7 mm to 20 mm; 3D 0.1 mm to 5 mm
1028 x 1024
MEASURING MATRIX
128x512 steps 32 phase encode
PIXEL INTENSITY
256 gray levels
POWER REQUIREMENTS
480 or 380/415
COOLING SYSTEM TYPE
Closed-loop water-cooled gradient
CRYOGEN USE, L/hr
less than 0.03 L/hr liquid helium
spacer
MRI Resources 
Jobs pool - Veterinary MRI - DICOM - Software - Fluorescence - Developers
 
Signa HDx 3.0T™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
gehealthcare.com/euen/mri/products/signa-hdx-3t/index.html From GE Healthcare;
The Signa HDx MRI system is GE's leading edge whole body magnetic resonance scanner designed to support high resolution, high signal to noise ratio, and short scan times.
Signa HDx 3.0T offers new technologies like ultra-fast image reconstruction through the new XVRE recon engine, advancements in parallel imaging algorithms and the broadest range of premium applications. The HD applications, PROPELLER (high-quality brain imaging extremely resistant to motion artifacts), TRICKS (contrast-enhanced angiographic vascular lower leg imaging), VIBRANT (for breast MRI), LAVA (high resolution liver imaging with shorter breath holds and better organ coverage) and MR Echo (high-definition cardiac images in real time) offer unique capabilities.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Compact short bore
Head and body coil, T/R quadrature head; optional coils e.g., T/R phased array extremity abdomen, spine, breast, knee, shoulder, cardiac imaging coils
SYNCHRONIZATION
ECG/peripheral, respiratory gating
PULSE SEQUENCES
SE, IR, 2D/3D GRE, RF-spoiled GRE, 2DFGRE, 2DFSPGR, 3DFGRE, 3DFSPGR, 3DTOFGRE, 3DFSPGR, 2DFSE, 2DFSE-XL, 2DFSE-IR, T1-FLAIR, SSFSE, EPI, DW-EPI, BRAVO, Angiography: 2D/3D TOF, 2D/3D phase contrast vascular
IMAGING MODES
Single, multislice, volume study, fast scan, multi slab, cine, localizer
1 cm to 40 cm continuous
2D 0.5 mm; 3D 0.1 mm
1024 x 1024
PIXEL INTENSITY
256 gray levels
60 cm
MAGNET WEIGHT
12000 kg
H*W*D
240 x 2216,6 x 201,6 cm
POWER REQUIREMENTS
480 or 380/415, 3 phase ||
COOLING SYSTEM TYPE
Closed-loop water-cooled grad.
0.03 L/hr helium
STRENGTH
23 - 50 mT/m
80 - 150 mT/m/ms
5-GAUSS FRINGE FIELD
2.8 m / 5.0 m
second and high order
spacer
MRI Resources 
Pediatric and Fetal MRI - Spectroscopy - Contrast Enhanced MRI - Service and Support - Movies - General
 
Parallel Imaging TechniqueForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
In parallel MR imaging, a reduced data set in the phase encoding direction(s) of k-space is acquired to shorten acquisition time, combining the signal of several coil arrays. The spatial information related to the phased array coil elements is utilized for reducing the amount of conventional Fourier encoding.
First, low-resolution, fully Fourier-encoded reference images are required for sensitivity assessment. Parallel imaging reconstruction in the Cartesian case is efficiently performed by creating one aliased image for each array element using discrete Fourier transformation. The next step then is to create an full FOV image from the set of intermediate images. Parallel reconstruction techniques can be used to improve the image quality with increased signal to noise ratio, spatial resolution, reduced artifacts, and the temporal resolution in dynamic MRI scans.
Parallel imaging algorithms can be divided into 2 main groups:
Image reconstruction produced by each coil (reconstruction in the image domain, after Fourier transform): SENSE (Sensitivity Encoding), PILS (Partially Parallel Imaging with Localized Sensitivity), ASSET.
Reconstruction of the Fourier plane of images from the frequency signals of each coil (reconstruction in the frequency domain, before Fourier transform): GRAPPA.
Additional techniques include SMASH, SPEEDER™, IPAT (Integrated Parallel Acquisition Techniques - derived of GRAPPA a k-space based technique) and mSENSE (an image based enhanced version of SENSE).
 
Images, Movies, Sliders:
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Parallel Imaging Technique' (12).Open this link in a new window

 
Further Reading:
  Basics:
Parallel MRI Using Multiple Receiver Coils
   by www-math.mit.edu    
Coil Arrays for Parallel MRI: Introduction and Overview.
   by www.mr.ethz.ch    
  News & More:
Cardiac MRI Becoming More Widely Available Thanks to AI and Reduced Exam Times
Wednesday, 19 February 2020   by www.dicardiology.com    
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE
Tuesday, 7 February 2017   by www.kjronline.org    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Clinical evaluation of a speed optimized T2 weighted fast spin echo sequence at 3.0 T using variable flip angle refocusing, half-Fourier acquisition and parallel imaging
Wednesday, 25 October 2006
Searchterm 'Reconstruction Time' was also found in the following service: 
spacer
News  (1)  
 
Array Spatial Sensitivity Encoding TechniqueInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(ASSET) ASSET is a parallel imaging technique of the SENSE type (image domain reconstruction).
Each coil element is sensitivity encoded and the covered spatial zone is mapped. By reducing the field of view in the phase encoding gradient direction the scan time decreases, but this images of each coil element contain foldover artifacts. The sensitivity profiles of the elements are used to calculate unfolded images.

See also Sensitivity Encoding, Generalized Autocalibrating Partially Parallel Acquisition.
spacer

• View the DATABASE results for 'Array Spatial Sensitivity Encoding Technique' (4).Open this link in a new window

MRI Resources 
Absorption and Emission - Raman Spectroscopy - Resources - Guidance - Image Quality - Homepages
 
Constructive Interference Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(CISS) This gradient echo sequence is a stimulated T2 echo. Two TrueFISP sequences are acquired with differing RF pulses and than combined for strong T2 Weighted high resolution 3D images.
These TrueFISP sequences are normally affected by dark phase dispersion bands, which are caused by patient induced local field inhomogeneities and made prominent by the relatively long TR used. The different excitation pulse regimes offset these bands in the 2 sequences. Combining the images results in a picture free of banding. The image combination is performed automatically after data collection, adding some time to the reconstruction process. The advantage of the 3D CISS sequence is its combination of high signal levels and extremely high spatial resolution.
Used for, e.g. inner ear, cranial nerves and cerebellum.

See also Steady State Free Precession.
spacer
 
Further Reading:
  News & More:
Pediatric and Adult Cochlear Implantation1
2003   by radiographics.rsnajnls.org    
MRI Resources 
Education pool - Functional MRI - Education - Supplies - Spectroscopy - Implant and Prosthesis pool
 
previous      11 - 15 (of 22)     next
Result Pages : [1]  [2]  [3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]