Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Relaxation Time' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Relaxation Time' found in 5 terms [] and 52 definitions []
previous     16 - 20 (of 57)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
Searchterm 'Relaxation Time' was also found in the following services: 
spacer
News  (3)  Resources  (2)  Forum  (6)  
 
T1 TimeForum -
related threads
 
The T1 relaxation time (also called spin lattice or longitudinal relaxation time), is a biological parameter that is used in MRIs to distinguish between tissue types. This tissue-specific time constant for protons, is a measure of the time taken to realign with the external magnetic field. The T1 constant will indicate how quickly the spinning nuclei will emit their absorbed RF into the surrounding tissue.
As the high-energy nuclei relax and realign, they emit energy which is recorded to provide information about their environment. The realignment with the magnetic field is termed longitudinal relaxation and the time in milliseconds required for a certain percentage of the tissue nuclei to realign is termed 'Time 1' or T1. Starting from zero magnetization in the z direction, the z magnetization will grow after excitation from zero to a value of about 63% of its final value in a time of T1. This is the basic of T1 weighted images.
The T1 time is a contrast determining tissue parameter. Due to the slow molecular motion of fat nuclei, longitudinal relaxation occurs rather rapidly and longitudinal magnetization is regained quickly. The net magnetic vector realigns with B0 leading to a short T1 time for fat.
Water is not as efficient as fat in T1 recovery due to the high mobility of the water molecules. Water nuclei do not give up their energy to the lattice (surrounding tissue) as quickly as fat, and therefore take longer to regain longitudinal magnetization, resulting in a long T1 time.

See also T1 Weighted Image, T1 Relaxation, T2 Weighted Image, and Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 Anatomic MRI of the Knee 2  Open this link in a new window
    
SlidersSliders Overview

 Breast MRI Images T2 And T1  Open this link in a new window
 Brain MRI Images T1  Open this link in a new window
      

 
spacer
 
• Related Searches:
    • Spin Echo Sequence
    • T1 Relaxation
    • Free Induction Decay
    • Longitudinal Relaxation
    • Magnetic Resonance Imaging MRI
 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
A practical guideline for T1 reconstruction from various flip angles in MRI
Saturday, 1 October 2016   by journals.sagepub.com    
Magnetic resonance imaging - From Wikipedia, the free encyclopedia.
   by en.wikipedia.org    
  News & More:
New technique could allow for safer, more accurate heart scans
Thursday, 10 December 2015   by www.gizmag.com    
Rockland Technimed: Tissue Viability Imaging
Saturday, 15 December 2007   by www.onemedplace.com    
MRI Resources 
Knee MRI - Abdominal Imaging - Breast MRI - Contrast Enhanced MRI - Patient Information - Movies
 
Adiabatic Fast Passage
 
(AFP) Adiabatic fast passage is a NMR technique of producing rotation of the macroscopic magnetization vector by shifting the frequency of RF energy pulses (or the strength of the magnetic field) through resonance (the Larmor frequency) in a time short compared to the relaxation times. Particularly used for inversion of the spins between high and low energy states with an excess of spins in the higher energy level. A continuous wave NMR technique used in e.g., MR spectroscopy.
spacer

• View the DATABASE results for 'Adiabatic Fast Passage' (3).Open this link in a new window

 
Further Reading:
  Basics:
Adiabatic theorem
   by en.wikipedia.org    
  News & More:
New theory of adiabaticity developed
Tuesday, 2 December 2008   by www.upi.com    
MRI Resources 
Quality Advice - Case Studies - Education pool - Developers - Libraries - Knee MRI
 
Balanced Fast Field EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(bFFE) A FFE sequence using a balanced gradient waveform. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Before the next TR in the slice phase and frequency encoding, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. Since the balanced gradients maintain the transverse and longitudinal magnetization, the result is, that both T1 and T2 contrast are represented in the image. This pulse sequence produces images with increased signal from fluid, along with retaining T1 weighted tissue contrast. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition. A fully balanced (refocused) sequence would yield higher signal, especially for tissues with long T2 relaxation times.

See Steady State Free Precession and Gradient Echo Sequence.
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine bFFE 1  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'Balanced Fast Field Echo' (3).Open this link in a new window

 
Further Reading:
  News & More:
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI
Monday, 1 September 2008   by www.ncbi.nlm.nih.gov    
Utility of the FIESTA Pulse Sequence in Body Oncologic Imaging: Review
June 2009   by www.ajronline.org    
Searchterm 'Relaxation Time' was also found in the following services: 
spacer
News  (3)  Resources  (2)  Forum  (6)  
 
Bloch Equations
 
Phenomenological (classical) equations of motion for the macroscopic magnetization vector. They include the effects of precession about the magnetic field (static and RF) and the T1 and T2 relaxation times.
spacer

• View the DATABASE results for 'Bloch Equations' (2).Open this link in a new window

 
Further Reading:
  Basics:
Bloch Equation Simulation
   by mrsrl.stanford.edu    
MRI Resources 
Supplies - Safety pool - Pediatric and Fetal MRI - MRI Accidents - MRI Technician and Technologist Jobs - Mobile MRI
 
Chromium Labeled Red Blood CellsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(Cr(III)-labeled RBC's) Chromium labeled red blood cells have paramagnetic properties and potential as an intravascular MRI contrast agent. The labeling with chromium decreases the relaxation times of packed red blood cells (RBCs). The use of RBCs in nuclear medicine suggests a low toxicity.

See also Contrast Agents, Intravascular Contrast Agents, Blood Pool Agents.
spacer

• View the DATABASE results for 'Chromium Labeled Red Blood Cells' (2).Open this link in a new window

 
Further Reading:
  Basics:
Chromium labeled red blood cells
   by radiopaedia.org    
Artifical Blood
   by medind.nic.in    
MRI Resources 
Abdominal Imaging - Implant and Prosthesis pool - General - Spectroscopy - Services and Supplies - Used and Refurbished MRI Equipment
 
previous      16 - 20 (of 57)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]