Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Resolution' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Resolution' found in 8 terms [] and 144 definitions []
previous     11 - 15 (of 152)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Resolution' was also found in the following services: 
spacer
News  (40)  Resources  (13)  Forum  (15)  
 
Matrix Size
 
The number of data points collected in one, two or all three directions. Normally used for the 2D in plane sampling. The display matrix may be different from the acquisition matrix, although the latter determines the resolution. Measurement time may be saved by not acquiring raw data lines corresponding to high resolution. Not measured rows are filled with zeroes prior to the image calculation. A square image is the result of an interpolation in phase encoding direction. See also Zero Filling.
mri safety guidance
Image Guidance
The chosen matrix size effects scan time, resolution and SNR. Reduced measurement matrixes decrease the scan time and the resolution by increased SNR.
spacer
 
• Related Searches:
    • Half Fourier
    • Matrices
    • Resolution
    • Image Quality
    • Image Resolution
Searchterm 'Resolution' was also found in the following services: 
spacer
Radiology  (27) Open this link in a new windowUltrasound  (69) Open this link in a new window
Breast MRIMRI Resource Directory:
 - Breast MRI -
 
(MR mammography) Magnetic resonance imaging of the breast is particularly useful in evaluation of newly diagnosed breast cancer, in women whose breast tissue is mammographically very dense and for screening in women with a high lifetime risk of breast cancer because of their family history or genetic disposition.
Breast MRI can be performed on all standard whole body magnets at a field strength of 0.5 T - 1.5 Tesla. Powerful gradient strengths over 15 mT/m will help to improve the balance between spatial resolution, scanning speed, and volume coverage. The use of a dedicated bilateral breast coil is obligatory.
Malignant lesions release angiogenic factors that increase local vessel density and vessel permeability. Breast cancer is detectable due to the strong enhancement in dynamic breast imaging that peaks early (about 1-2 min.) after contrast medium injection. If breast cancer is suspected, a breast biopsy may be necessary to secure the diagnosis.

See also Magnetic Resonance Imaging MRI, Biopsy and MR Guided Interventions.

Requirements in breast MRI procedures:
•
Both breasts must be measured without gaps.
•
Temporal resolution should be sufficient to allow early imaging after contrast agent with dynamic imaging every 60-120 sec.
•
For the best possible detection of enhancement fat signal should be eliminated either by image subtraction or by spectrally selective fat saturation.
•
Thin slices are necessary to assure absence of partial volume effects.
•
Imaging should be performed with a spatial resolution in plane less than 1 mm.

For Ultrasound Imaging (USI) see Breast Ultrasound at Medical-Ultrasound-Imaging.com.

See also the related poll result: 'MRI will have replaced 50% of x-ray exams by'
 
Images, Movies, Sliders:
 Breast MRI Images T2 And T1  Open this link in a new window
      
 Breast MRI Images T2 And T1 Pre - Post Contrast  Open this link in a new window
 Breast MRI Images T1 Pre - Post Contrast  Open this link in a new window
      
 
Radiology-tip.comradMammography,  Breast Imaging
spacer
Medical-Ultrasound-Imaging.comBreast Ultrasound
spacer

• View the DATABASE results for 'Breast MRI' (13).Open this link in a new window


• View the NEWS results for 'Breast MRI' (41).Open this link in a new window.
 
Further Reading:
  Basics:
New Screening Guidelines for Women at High Risk for Breast Cancer
Wednesday, 26 September 2007   by www.newswise.com    
CONTRAST-ENHANCED MRI OF THE BREAST(.pdf)
MRI Improves Breast Cancer Screening in Older BRCA Carriers
Monday, 5 January 2015   by www.cancernetwork.com    
  News & More:
Technology advances in breast cancer screenings lead to early diagnosis
Friday, 6 October 2023   by ksltv.com    
Are synthetic contrast-enhanced breast MRI images as good as the real thing?
Friday, 18 November 2022   by healthimaging.com    
Abbreviated breast MRI protocols not as cost-effective as promised, new study shows
Wednesday, 20 July 2022   by healthimaging.com    
Deep learning poised to improve breast cancer imaging
Thursday, 24 February 2022   by www.eurekalert.org    
Pre-Operative Breast MRI Can Help Identify Patients Likely to Experience Nipple-Sparing Mastectomy Risks
Wednesday, 7 April 2021   by www.diagnosticimaging.com    
Breast cancer screening recalls: simple MRI measurement could avoid 30% of biopsies
Monday, 1 March 2021   by www.eurekalert.org    
A Comparison of Methods for High-Spatial-Resolution Diffusion-weighted Imaging in Breast MRI
Tuesday, 25 August 2020   by pubs.rsna.org    
Pre-Operative Breast MRI Diagnoses More Cancers in Women with DCIS
Thursday, 9 July 2020   by www.diagnosticimaging.com    
Breast MRI and tumour biology predict axillary lymph node response to neoadjuvant chemotherapy for breast cancer
Thursday, 26 December 2019   by cancerimagingjournal.biomedcentral.com    
Breast MRI Coding Gets an Overhaul in 2019
Wednesday, 9 January 2019   by www.aapc.com    
How accurate are volumetric software programs when compared to breast MRI?
Thursday, 27 July 2017   by www.radiologybusiness.com    
Additional Breast Cancer Tumors Found on MRI After Mammography May Be Larger, More Aggressive
Wednesday, 9 December 2015   by www.oncologynurseadvisor.com    
Preoperative MRI May Overdiagnose Contralateral Breast Cancer
Wednesday, 2 December 2015   by www.cancertherapyadvisor.com    
BI-RADS and breast MRI useful in predicting malignancy
Wednesday, 30 May 2012   by www.oncologynurseadvisor.com    
MRI Resources 
Health - General - Supplies - Cochlear Implant - Directories - Safety Products
 
Contrast Enhanced Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(CE MRA) Contrast enhanced MR angiography is based on the T1 values of blood, the surrounding tissue, and paramagnetic contrast agent.
T1-shortening contrast agents reduces the T1 value of the blood (approximately to 50 msec, shorter than that of the surrounding tissues) and allow the visualization of blood vessels, as the images are no longer dependent primarily on the inflow effect of the blood. Contrast enhanced MRA is performed with a short TR to have low signal (due to the longer T1) from the stationary tissue, short scan time to facilitate breath hold imaging, short TE to minimize T2* effects and a bolus injection of a sufficient dose of a gadolinium chelate.
Images of the region of interest are performed with 3D spoiled gradient echo pulse sequences. The enhancement is maximized by timing the contrast agent injection such that the period of maximum arterial concentration corresponds to the k-space acquisition. Different techniques are used to ensure optimal contrast of the arteries e.g., bolus timing, automatic bolus detection, bolus tracking, care bolus. A high resolution with near isotropic voxels and minimal pulsatility and misregistration artifacts should be striven for. The postprocessing with the maximum intensity projection (MIP) enables different views of the 3D data set.
Unlike conventional MRA techniques based on velocity dependent inflow or phase shift techniques, contrast enhanced MRA exploits the gadolinium induced T1-shortening effects. CE MRA reduces or eliminates most of the artifacts of time of flight angiography or phase contrast angiography. Advantages are the possibility of in plane imaging of the blood vessels, which allows to examine large parts in a short time and high resolution scans in one breath hold. CE MRA has found a wide acceptance in the clinical routine, caused by the advantages:
•
3D MRA can be acquired in any plane, which means that greater vessel coverage can be obtained at high resolution with fewer slices (aorta, peripheral vessels);
•
the possibility to perform a time resolved examination (similarly to conventional angiography);
•
no use of ionizing radiation; paramagnetic agents have a beneficial safety.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Contrast Enhanced Magnetic Resonance Angiography' (14).Open this link in a new window


• View the NEWS results for 'Contrast Enhanced Magnetic Resonance Angiography' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Contrast-Enhanced MR Angiography(.pdf)
   by ric.uthscsa.edu    
CONTRAST ENHANCED MR ANGIOGRAPHY – PRINCIPLES, APPLICATIONS, TIPS AND PITFALLS(.pdf)
  News & More:
CONTRAST-ENHANCED MRA OF THE CAROTIDS(.pdf)
PERIPHERAL VASCULAR MAGNETIC RESONANCE ANGIOGRAPHY(.pdf)
CONTRAST ENHANCED MRI OF THE LIVER STATE-OF-THE-ART(.pdf)
Searchterm 'Resolution' was also found in the following services: 
spacer
News  (40)  Resources  (13)  Forum  (15)  
 
KeyholeInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Keyhole imaging is used for dynamic imaging with contrast medium. The advantage is that the keyhole technique increases temporal resolution without a loss of spatial resolution by limited data acquisition. Keyhole Fourier imaging updates the low spatial frequencies of the original full, high-resolution data set. The high spatial frequency content of the image is constant in time so that its updating would be unnecessary. The high spatial frequency data is acquired from a baseline image, for example, before injection of a contrast agent.
After contrast injection, only the lower spatial frequency data is acquired because, there is no change in the tissue that is responsible for the higher frequency spatial variation in the image.
spacer

• View the DATABASE results for 'Keyhole' (8).Open this link in a new window


• View the NEWS results for 'Keyhole' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Optimal k-Space Sampling for Dynamic Contrast-Enhanced MRI with an Application to MR Renography
Thursday, 5 November 2009   by www.ncbi.nlm.nih.gov    
Searchterm 'Resolution' was also found in the following services: 
spacer
Radiology  (27) Open this link in a new windowUltrasound  (69) Open this link in a new window
Parallel Imaging TechniqueForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
In parallel MR imaging, a reduced data set in the phase encoding direction(s) of k-space is acquired to shorten acquisition time, combining the signal of several coil arrays. The spatial information related to the phased array coil elements is utilized for reducing the amount of conventional Fourier encoding.
First, low-resolution, fully Fourier-encoded reference images are required for sensitivity assessment. Parallel imaging reconstruction in the Cartesian case is efficiently performed by creating one aliased image for each array element using discrete Fourier transformation. The next step then is to create an full FOV image from the set of intermediate images. Parallel reconstruction techniques can be used to improve the image quality with increased signal to noise ratio, spatial resolution, reduced artifacts, and the temporal resolution in dynamic MRI scans.
Parallel imaging algorithms can be divided into 2 main groups:
Image reconstruction produced by each coil (reconstruction in the image domain, after Fourier transform): SENSE (Sensitivity Encoding), PILS (Partially Parallel Imaging with Localized Sensitivity), ASSET.
Reconstruction of the Fourier plane of images from the frequency signals of each coil (reconstruction in the frequency domain, before Fourier transform): GRAPPA.
Additional techniques include SMASH, SPEEDER™, IPAT (Integrated Parallel Acquisition Techniques - derived of GRAPPA a k-space based technique) and mSENSE (an image based enhanced version of SENSE).
 
Images, Movies, Sliders:
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Parallel Imaging Technique' (12).Open this link in a new window

 
Further Reading:
  Basics:
Parallel MRI Using Multiple Receiver Coils
   by www-math.mit.edu    
Coil Arrays for Parallel MRI: Introduction and Overview.
   by www.mr.ethz.ch    
  News & More:
Cardiac MRI Becoming More Widely Available Thanks to AI and Reduced Exam Times
Wednesday, 19 February 2020   by www.dicardiology.com    
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE
Tuesday, 7 February 2017   by www.kjronline.org    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Clinical evaluation of a speed optimized T2 weighted fast spin echo sequence at 3.0 T using variable flip angle refocusing, half-Fourier acquisition and parallel imaging
Wednesday, 25 October 2006
MRI Resources 
MR Myelography - Artifacts - Chemistry - Supplies - Case Studies - Pacemaker
 
previous      11 - 15 (of 152)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]