Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Sampling' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Sampling' found in 8 terms [] and 37 definitions []
previous     31 - 35 (of 45)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9]
Searchterm 'Sampling' was also found in the following services: 
spacer
News  (2)  Resources  (5)  Forum  (1)  
 
No Phase Wrap
 
(NPW / PNW - Phase No Wrap) If the receiving RF coil is sensitive to tissue signal arising from outside the desired FOV, this undesired signal may be incorrectly mapped, or wrapped back to a location within the image and is seen as artifact. This problem occurs in the phase encoding direction, where the phases of signal-bearing tissues outside of the FOV in the y-direction are a replication of the phases that are encoded within the FOV.
A user-selectable parameter maps this signal to its correct location outside the FOV, then discards any signal from outside the FOV before displaying the image. No phase wrap works by filling k-space to the same extent, using twice as many phase encoding steps. In order to be able to choose this parameter, in most cases more than an average is necessary.

See Foldover Suppression and Oversampling.
spacer
 
• Related Searches:
    • Aliasing Artifact
    • Phase Encoding
    • Aliasing
    • Rectangular Field of View
    • Phase Encoding Artifact Reduction
Searchterm 'Sampling' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (12) Open this link in a new window
Oscillating Gradient System
 
A gradient system, which changes the readout gradient sinusoidally by connecting a capacitor to the self inductance generated by the gradient coil. Oscillating gradient systems were initially used in the development of EPI.
This electrical oscillating circuit can be driven with minimal power to generate the gradient amplitudes and switching frequencies required for echo planar imaging (EPI).
Disadvantages are that it is not possible to use any arbitrary trapezoidal gradient wave form as can be used in standard MRI. Also, the gradients are inflexible and cannot be used to create other ultrafast sequences and beside, nonlinear sampling of the MR signal is required.
spacer

• View the DATABASE results for 'Oscillating Gradient System' (2).Open this link in a new window

MRI Resources 
Functional MRI - MRI Technician and Technologist Career - Stimulator pool - MRI Technician and Technologist Schools - Corporations - Safety Training
 
Partial Echo
 
(PE) The partial echo technique (also called fractional echo) is used to shorten the minimum echo time. By the acquisition of only a part of k-space data this technique benefits (like all partial Fourier techniques) from the complex conjugate symmetry between the k-space halves (this is called Hermitian symmetry).
The dephasing gradient in the frequency direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened. Partial echo gives a better SNR at a given TE when a smaller FOV or thinner slices are selected, allows a longer sampling time, and a larger water fat shift (WFS, see also bandwidth) due to a lower gradient amplitude. The resolution is not affected. This is often used in gradient echo sequences (e.g. FLASH, Contrast Enhanced Magnetic Resonance Angiography) to reduce the echo time and yields a lower gradient moment. The disadvantage of using a partial echo can be a lower SNR, although this may be partly offset by the reduced echo time.
Also called Fractional Echo, Read Conjugate Symmetry, Single Side View.

See also Partial Fourier Technique and acronyms for 'partial echo' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Echo' (4).Open this link in a new window

 
Further Reading:
  Basics:
Method and apparatus for subterranean formation flow imaging
   by www.google.com    
Searchterm 'Sampling' was also found in the following services: 
spacer
News  (2)  Resources  (5)  Forum  (1)  
 
Partial Fourier Imaging
 
Reconstruction of an image from a MR data set comprising an asymmetric sampling of k-space. For example, it can be used either to shorten image acquisition time, by reducing the number of phase encoding steps required, or to shorten the echo time, TE, by moving the echo off-center in the acquisition window. In either case the signal to noise ratio is reduced and the resolution can be improved to correspond to the maximum available resolution in the data.
spacer

• View the DATABASE results for 'Partial Fourier Imaging' (5).Open this link in a new window

Searchterm 'Sampling' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (12) Open this link in a new window
Pulse Sequence Timing DiagramInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Spin Echo Timing Diagram The schematic figures of a pulse sequence timing diagram illustrate the steps of basic hardware activity that are incorporated into a pulse sequence. Time during sequence execution is indicated along the horizontal axes. Each line belongs to a different hardware component. One line is needed for the radio frequency transmitter and also one for each gradient (Gs = slice selection gradient x, Gf = phase encoding gradient y, Gf = frequency encoding gradient z, also called readout gradient).
In picture 1, a timing diagram for a 2D pulse sequence is shown.
Slice selection and signal detection are repeated in duration, relative timing and amplitude, each time the sequence is repeated. A single phase encoding component is present each time the sequence is executed.
Additional lines are added for ADC (Analog to Digital Converter) and sampling. A gradient pulse is shown as a deviation above or below the horizontal line. Simultaneous component activities such as the RF pulse and slice selection gradient are indicated as a non-zero deviation from both lines at the same horizontal position. Simple deviations from zero show constant amplitude gradient pulse. Gradient amplitudes that change during the measurement, e.g. phase encoding are represented as hatched regions.

Spin Echo Timing Diagram The second picture shows a timing diagram for a 3D pulse sequence.
Volume excitation and signal detection are repeated in duration, relative timing and amplitude, each time the sequence is repeated. Two phase encoding components are present, one in the phase encoding direction and the other in slice selection direction (irrespectively incremented in amplitude) in each time the sequence is executed. A description of the comparison of hardware activity between different pulse sequences.
spacer

• View the DATABASE results for 'Pulse Sequence Timing Diagram' (7).Open this link in a new window

MRI Resources 
MRI Reimbursement - MRI Training Courses - Most Wanted - Stimulator pool - Supplies - Blood Flow Imaging
 
previous      31 - 35 (of 45)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]