Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Saturation Pulses' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Saturation Pulses' found in 1 term [] and 10 definitions [], (+ 10 Boolean[] results
previous     16 - 20 (of 21)     next
Result Pages : [1]  [2 3]  [4 5]
MRI Resources 
Image Quality - Software - Services and Supplies - Sequences - General - Journals
 
Spectral Selection Attenuated Inversion RecoveryInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(SPAIR) The MRI fat suppression technique SPAIR is characterized by a low sensitivity to RF field inhomogeneities. The used adiabatic radio frequency pulses for spectral saturation ensure a high uniformity and lower specific absorption rate (SAR).
SPAIR is suitable for offset and difficult to suppress regions such as liver, pelvis, shoulder and hips.
spacer
 
• Related Searches:
    • Attenuation
    • Spectral Presaturation Inversion Recovery
    • Inversion Recovery
    • Saturation
    • Fat Suppression
MRI Resources 
Spine MRI - MRI Centers - Sequences - Claustrophobia - Jobs - Safety Products
 
Saturation Recovery
 
(SR) Particular type of partial saturation pulse sequence in which the preceding pulses leave the spins in a state of saturation, so that recovery at the time of the next pulse has taken place from an initial condition of no magnetization. A rare used MRI pulse sequence that generates a predominantly proton density dependent signal, basically employing a 90° RF excitation pulse, with a very long repetition time. With this technique T1 times can be measured faster than with inversion recovery pulse sequences.
This saturation recovery sequence consists of multiple 90° radio frequency (RF) pulses with a short repetition time. A spoiler gradient pulse dephases the longitudinal magnetization that remains after the first 90° radio frequency pulse. A repetition time interval after the application of this spoiling gradient turns an additional 90° pulse the new developed longitudinal magnetization into the transverse plane, followed by recording a gradient echo.
spacer

• View the DATABASE results for 'Saturation Recovery' (5).Open this link in a new window

 
Further Reading:
  Basics:
Contrast mechanisms in magnetic resonance imaging
2004   by www.iop.org    
MRI Resources 
Databases - Breast Implant - - Diffusion Weighted Imaging - Examinations - Knee MRI
 
Radio Frequency Pulse
 
A pulse is a rapid change in the amplitude of a RF signal or in some characteristic a RF signal, e.g., phase or frequency, from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. For radio frequencies near the Larmor frequency, it will result in rotation of the macroscopic magnetization vector. The amount of rotation will depend on the strength and duration of the RF pulse; commonly used examples are 90° (p/2) and 180° (p) pulses.
RF pulses are used in the spin preparation phase of a pulse sequence, which prepare the spin system for the ensuing measurements. In many sequences, RF pulses are also applied to the volumes outside the one to be measured. This is the case when spatial presaturation techniques are used to suppress artifacts. Many preparation pulses are required in MR spectroscopy to suppress signal from unwanted spins. The simplest preparation pulse making use of spectroscopic properties is a fat saturation pulse, which specifically irradiates the patient at the fat resonant frequency, so that the magnetization coming from fat protons is tilted into the xy-plane where it is subsequently destroyed by a strong dephasing gradient.
The frequency spectrum of RF pulses is critical as it determines the spatial extension and homogeneity over which the spin magnetization is influenced while a gradient field is applied.
spacer

• View the DATABASE results for 'Radio Frequency Pulse' (16).Open this link in a new window

 
Further Reading:
  News & More:
MRI Safety: Monitoring Body Temperature During MRI
Thursday, 4 August 2011   by www.diagnosticimaging.com    
MRI Resources 
Service and Support - Mobile MRI Rental - Bioinformatics - Corporations - Breast MRI - Collections
 
Fat SuppressionForum -
related threads
 
Fat suppression is the process of utilizing specific MRI parameters to remove the deleterious effects of fat from the resulting images , e.g. with STIR, FAT SAT sequences, water selective (PROSET WATS - water only selection, also FATS - fat only selection possible) excitation techniques, or pulse sequences based on the Dixon method.
Spin magnetization can be modulated by using special RF pulses. CHESS or its variations like SPIR, SPAIR (Spectral Selection Attenuated Inversion Recovery) and FAT SAT use frequency selective excitation pulses, which produce fat saturation.
Fat suppression techniques are nearly used in all body parts and belong to every standard MRI protocol of joints like knee, shoulder, hips, etc.
mri safety guidance
Image Guidance
Imaging of, e.g. the foot can induce bad fat suppression with SPIR/FAT SAT due to the asymmetric volume of this body part. The volume of the foot alters the magnetic field to a different degree than the smaller volume of the lower leg affecting the protons there. There is only a small band of tissue where the fat protons are precessing at the frequency expected, resulting in frequency selective fat saturation working only in that area. This can be corrected by volume shimming or creating a more symmetrical volume being imaged with water bags.
Even with their longer scan time and motion sensitivity, STIR (short T1/tau inversion recovery) sequences are often the better choice to suppress fat. STIR images are also preferred because of the decreased sensitivity to field inhomogeneities, permitting larger fields of views when compared to fat suppressed images and the ability to image away from the isocenter.
See also Knee MRI.
Sequences based on Dixon turbo spin echo (fast spin echo) can deliver a significant better fat suppression than conventional TSE/FSE imaging.
 
Images, Movies, Sliders:
 Shoulder Axial T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 MRI Orbita T2 FatSat  Open this link in a new window
    
 Knee MRI Sagittal STIR 001  Open this link in a new window
 MRI - Anatomic Imaging of the Ankle 3  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Fat Suppression' (28).Open this link in a new window

 
Further Reading:
  Basics:
Techniques of Fat Suppression(.pdf)
   by cds.ismrm.org    
  News & More:
Enhanced Fast GRadient Echo 3-Dimensional (efgre3D) or THRIVE
   by www.mri.tju.edu    
Ultrashort echo time (UTE) MRI of the spine in thalassaemia
February 2004   by bjr.birjournals.org    
MRI Resources 
Contrast Enhanced MRI - Safety pool - NMR - Colonography - MRI Accidents - Knee MRI
 
Saturation
 
In MR, saturation is a nonequilibrium state with no net magnetization. The same amount of nuclear spins is aligned against and with the magnetic field. Saturation methods like FatSat, SPIR etc., work with a frequency selective saturation pulse for a specific chemical shift applied before the actual sequence starts. This saturation pulse adjusts the magnetization from tissue components to zero. The hydrogen nuclei of fat and water resonate at different frequencies, which makes it possible to excite just the fat with repeatedly applying RF pulses at the Larmor frequency with interpulse times compared to T1. The resulting signal is then destroyed with a gradient pulse (Spoiler Gradient Pulse). Fat is the chemical compound to be saturated at a fat saturation sequence. When the actual sequence follows, (e.g., a spin echo sequence) the unwanted suppressed component will not resonate.

See also Saturation Recovery.
spacer

• View the DATABASE results for 'Saturation' (54).Open this link in a new window

MRI Resources 
Image Quality - Portals - Patient Information - Equipment - Libraries - Spectroscopy pool
 
previous      16 - 20 (of 21)     next
Result Pages : [1]  [2 3]  [4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]