Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Scan Time' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Scan Time' found in 1 term [] and 48 definitions []
1 - 5 (of 49)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
Searchterm 'Scan Time' was also found in the following services: 
spacer
News  (25)  Resources  (3)  Forum  (13)  
 
Scan TimeForum -
related threads
 
(SCT) The total scan time is the time required to collect all data needed to generate the programmed images. The scan time is related to the used pulse sequence and dependent on the assemble of parameters like e.g., repetition time (TR), Matrix, number of signal averages (NSA), TSE- or EPI factor and flip angle.
For example, the total scan time for a standard spin echo or gradient echo sequence is number of repetitions x the scan time per repetition (means the product of repetition time (TR), number of phase encoding steps, and NSA).

See also Number of Excitations, Turbo Spin Echo Turbo Factor, Echo Planar Imaging Factor, Flip Angle and Image Acquisition Time.

See also acronyms for 'scan time parameters' from different manufacturers.
spacer
 
• Share the entry 'Scan Time':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Abdominal Imaging
    • Breast MRI
    • MRI Procedure
    • Number of Signal Averages
    • Fractional Nex Imaging
 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging
Tuesday, 28 June 2011   by scienceline.org    
Clinical evaluation of a speed optimized T2 weighted fast spin echo sequence at 3.0 T using variable flip angle refocusing, half-Fourier acquisition and parallel imaging
Wednesday, 25 October 2006
MRI Resources 
Online Books - General - Nerve Stimulator - Health - Spectroscopy - Mobile MRI Rental
 
Breath Hold ImagingMRI Resource Directory:
 - Abdominal Imaging -
 
Breath hold imaging in MRI is a technique with one ore more stoppage of breathing during the sequence and require therefore a short scan time. Breath hold techniques are used with fast gradient echo sequences in thoracic or abdominal regions with much respiratory movement.
Breath hold cine MRI techniques are used in cardiovascular imaging and provide detailed views of the beating heart in different cardiac axes.
Breath hold imaging requires the full cooperation of the patient, caused by usual MRI scan times from 15 to 20 sec.. In some cases breath holding can be practiced outside the MRI scanner to improve patient cooperation with the examination. Shorter scan times e.g. by parallel imaging techniques, or the administration of oxygen can help the patient to hold the breath during the scan.
See also Abdominal Imaging.
 
Images, Movies, Sliders:
 MRI Upper Abdomen T1 with Contrast  Open this link in a new window
 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
 Anatomic Imaging of the Lungs  Open this link in a new window
 
spacer

• View the DATABASE results for 'Breath Hold Imaging' (7).Open this link in a new window

 
Further Reading:
  News & More:
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE
Tuesday, 7 February 2017   by www.kjronline.org    
Controlling patient's breathing makes cardiac MRI more accurate
Friday, 13 May 2016   by www.upi.com    
Accurate T1 Quantification Using a Breath-hold Inversion Recovery TrueFISP Sequence
2003   by rsna2003.rsna.org    
MRI Resources 
Collections - MR Myelography - Mobile MRI Rental - Anatomy - Sequences - Education pool
 
DixonInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The Dixon technique is a MRI method used for fat suppression and/or fat quantification. The difference in magnetic resonance frequencies between fat and water-bound protons allows the separation of water and fat images based on the chemical shift effect.
This imaging technique is named after Dixon, who published in 1984 the basic idea to use phase differences to calculate water and fat components in postprocessing. Dixon's method relies on acquiring an image when fat and water are 'in phase', and another in 'opposed phase' (out of phase). These images are then added together to get water-only images, and subtracted to get fat-only images. Therefore, this sequence type can deliver up to 4 contrasts in one measurement: in phase, opposed phase, water and fat images. An additional benefit of Dixon imaging is that source images and fat images are also available to the diagnosing physician.
The original two point Dixon sequence (number of points means the number of images acquired at different TE) had limited possibilities to optimize the echo time, spatial resolution, slice thickness, and scan time; but Dixon based fat suppression can be very effective in areas of high magnetic susceptibility, where other techniques fail. This insensitivity to magnetic field inhomogeneity and the possibility of direct image-based water and fat quantification have currently generated high research interests and improvements to the basic method (three point Dixon).
The combination of Dixon with gradient echo sequences allows for example liver imaging with 4 image types in one breath hold. With Dixon TSE/FSE an excellent fat suppression with high resolution can be achieved, particularly useful in imaging of the extremities.
For low bandwidth imaging, chemical shift correction of fat images can be made before recombination with water images to produce images free of chemical shift displacement artifacts. The need to acquire more echoes lengthens the minimum scan time, but the lack of fat saturation pulses extends the maximum slice coverage resulting in comparable scan time.
spacer

• View the DATABASE results for 'Dixon' (8).Open this link in a new window

 
Further Reading:
  Basics:
Separation of fat and water signal in magnetic resonanace imaging
2011   by www.diva-portal.org    
Direct Water and Fat Determination in Two-Point Dixon Imaging
April 2013   by scholarship.rice.edu    
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
Measurement of Fat/Water Ratios in Rat Liver Using 3DThree-Point Dixon MRI
2004   by www.civm.duhs.duke.edu    
  News & More:
The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model
Tuesday, 30 August 2022   by www.nature.com    
Liver Imaging Today
Friday, 1 February 2013   by www.healthcare.siemens.it    
mDIXON being developed to simplify and accelerate liver MRI
September 2010   by incenter.medical.philips.com    
Searchterm 'Scan Time' was also found in the following services: 
spacer
News  (25)  Resources  (3)  Forum  (13)  
 
Half Scan
 
(HS) A method in which approximately one half of the acquisition matrix in the phase encoding direction is acquired. Half scan is possible because of symmetry in acquired data. Since negative values of phase encoded measurements are identical to corresponding positive values, only a little over half (more than 62.5%) of a scan actually needs to be acquired to replicate an entire scan. This results in a reduction in scan time at the expense of signal to noise ratio. The time reduction can be nearly a factor of two, but full resolution is maintained.
Half scan can be used when scan times are long, the signal to noise ratio is not critical and where full spatial resolution is required. Half scan is particularly appropriate for scans with a large field of view and relatively thick slices; and, in 3D scans with many slices. In some fast scanning techniques the use of Half scan enables a shorter TE thus improving contrast. For this reason, the Half scan parameter is located in the contrast menu.

More information about scan time reduction; see also partial fourier technique.
spacer

• View the DATABASE results for 'Half Scan' (4).Open this link in a new window

MRI Resources 
Corporations - Spine MRI - Artifacts - MR Myelography - NMR - Stimulator pool
 
Partial Averaging
 
Partial averaging is a scan time reduction method that takes advantage of the complex conjugate of the k-space. The number of phase encoding steps of the acquisition matrix are reduced in the phase encoding direction.
Since negative values of phase encoded measurements are identical to corresponding positive values, only a little over half (more than 62.5%) of a scan actually needs to be acquired to replicate an entire scan. This results in a reduction in scan time at the expense of signal to noise ratio. The time reduction can be nearly a factor of two, but full resolution is maintained.
Partial Fourier averaging can be used when scan times are long, the signal to noise ratio is not critical and where full spatial resolution is required. Partial averaging is particularly appropriate for scans with a large field of view and relatively thick slices; and in 3D scans with many slices. In some fast scanning techniques the use of partial averaging enables a shorter TE thus improving contrast.
Partial averaging is also called Fractional NEX, Half Scan, Half Fourier, Phase Conjugate Symmetry, Single Side Encoding.
spacer

• View the DATABASE results for 'Partial Averaging' (4).Open this link in a new window

MRI Resources 
Image Quality - Contrast Agents - Implant and Prosthesis - Intraoperative MRI - General - Shoulder MRI
 
     1 - 5 (of 49)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]