Controlling the frequencyspectrum (bandwidth) of a RF pulse (via tailoring) while imposing a magnetic field gradient on spins, such that only a desired region will have an appropriate resonant frequency to be excited.
Originally used to excite all but a desired region; now often used to select only a desired region, such as a plane, for excitation. Used without simultaneous magnetic field gradients, tailored RF pulses can be used to selectively excite a particular spectral line or group of lines. RF and gradient pulse combinations can be designed to select both spatial regions and spectral frequencies.
The selective excitation of spins in only a limited region of space. This can be particularly useful for spectroscopy as well as imaging. Spatial localization of the signal source may be achieved through spatially selective excitation and the resulting signal may be analyzed directly for the spectrum corresponding to the excited region. It is usually achieved with selective excitation.
Typically, a single dimension of localization can be achieved with one selective RF excitation pulse (and a magnetic field gradient along a desired direction), while a localized volume (3D) can be excited with a stimulated echo produced with three selective RF pulses whose selective magnetic field gradients are mutually orthogonal, having a common intersection in the desired region. Similar 'crossed plane' excitation can be used with selective 180° refocusing pulses and conventional spin echoes.
A degree of spatial localization of excitation can alternatively be achieved with depth pulses, e.g. when using surface coils for excitation as well as signal detection. An indirect application of selective excitation for volume-selected spectroscopy is to use appropriate combinations of signals acquired after selective inversion of different regions, in order to subtract away the signal from undesired regions.
A form of a spin echo produced by three pulse RF sequences, consisting of two RF pulses following an initial exciting RF pulse. The stimulated echo appears at a time delay after the third pulse equal to the interval between the first two pulses. Although classically produced with 90° pulses, any RF pulses other than an ideal 180° can produce a stimulated echo.
The intensity of the echo depends in part on the T1 relaxation time because the excitation is 'stored' as longitudinal magnetization between the second and third RF pulses. For example, use of stimulated echoes with spatially selective excitation with orthogonalmagnetic field gradients permits volume-selective excitation for spectroscopic localization.
Image Guidance
Artifacts may appear as a series of fine lines. A narrow bandwidth causes a wide read window, which allows the stimulated echo to be incorporated into the image data. This can be supported by increasing the received bandwidth, which would narrow the read window, thus not incorporating the extraneous echo. Another help would be to change the first echo time, which may change the spacing of the stimulated echoes to outside that of the read window for the secondecho.
Imaging of, e.g. the foot can induce bad fat suppression with SPIR/FAT SAT due to the asymmetric volume of this body part. The volume of the foot alters the magnetic field to a different degree than the smaller volume of the lower leg affecting the protons there. There is only a small band of tissue where the fat protons are precessing at the frequency expected, resulting in frequency selective fat saturation working only in that area. This can be corrected by volume shimming or creating a more symmetrical volume being imaged with water bags.
Even with their longer scan time and motion sensitivity, STIR (short T1/tau inversion recovery) sequences are often the better choice to suppress fat. STIR images are also preferred because of the decreased sensitivity to field inhomogeneities, permitting larger fields of views when compared to fat suppressed images and the ability to image away from the isocenter. See also Knee MRI.
Sequences based on Dixonturbo spin echo (fast spin echo) can deliver a significant better fat suppression than conventional TSE/FSE imaging.