Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Sequences' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Sequences' found in 2 terms [] and 188 definitions []
previous     96 - 100 (of 190)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Sequences' was also found in the following services: 
spacer
News  (6)  Resources  (8)  Forum  (51)  
 
FerumoxideInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Short name: AMI-25, generic name: Ferumoxide (SPIO)
Ferumoxides are superparamagnetic (T2*) MRI contrast agents, so the largest signal change is on T2 and T2* weighted images.
The agent distributes relatively rapidly to organs with reticuloendothelial cells primarily the liver, spleen and bone marrow. The liver shows decreased signal intensity, as does the spleen and marrow. The agent is taken up by the normal liver, resulting in increased CNR between tumor and normal liver. Hepatocellular lesions, such as adenoma or focal nodular hyperplasia, contain reticuloendothelial cells, so they will behave similar to the liver, with decreased signal on T2 weighted images. On T1 images, there is typically some circulating contrast agent, and blood vessels show increased signal intensity.
Current MRI protocols involve T1 weighted breath-hold gradient echo images of the liver, and fast spin echo T2 weighted pictures. This requires about 15 minutes. The patient is then removed from the scanner, and the contrast agent administered. After contrast administration, the same pulse sequences are again repeated.
spacer
 
• Related Searches:
    • Ultrasmall Superparamagnetic Iron Oxide
    • Superparamagnetic Contrast Agents
    • Intracellular Contrast Agents
    • Superparamagnetic Iron Oxide
    • Very Small Superparamagnetic Iron Oxide Particles
 
Further Reading:
  Basics:
Comparison of Two Superparamagnetic Viral-Sized Iron Oxide Particles Ferumoxides and Ferumoxtran-10 with a Gadolinium Chelate in Imaging Intracranial Tumors
2002   by www.ajnr.org    
Optimized Labelling of Human Monocytes with Iron Oxide MR Contrast Agents
Sunday, 30 November 2003   by rsna2003.rsna.org    
Searchterm 'Sequences' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (1) Open this link in a new window
FlowForum -
related threads
 
Flow phenomena are intrinsic processes in the human body. Organs like the heart, the brain or the kidneys need large amounts of blood and the blood flow varies depending on their degree of activity. Magnetic resonance imaging has a high sensitivity to flow and offers accurate, reproducible, and noninvasive methods for the quantification of flow. MRI flow measurements yield information of blood supply of of various vessels and tissues as well as cerebro spinal fluid movement.
Flow can be measured and visualized with different pulse sequences (e.g. phase contrast sequence, cine sequence, time of flight angiography) or contrast enhanced MRI methods (e.g. perfusion imaging, arterial spin labeling).
The blood volume per time (flow) is measured in: cm3/s or ml/min. The blood flow-velocity decreases gradually dependent on the vessel diameter, from approximately 50 cm per second in arteries with a diameter of around 6 mm like the carotids, to 0.3 cm per second in the small arterioles.

Different flow types in human body:
•
Behaves like stationary tissue, the signal intensity depends on T1, T2 and PD = Stagnant flow
•
Flow with consistent velocities across a vessel = Laminar flow
•
Laminar flow passes through a stricture or stenosis (in the center fast flow, near the walls the flow spirals) = Vortex flow
•
Flow at different velocities that fluctuates = Turbulent flow

See also Flow Effects, Flow Artifact, Flow Quantification, Flow Related Enhancement, Flow Encoding, Flow Void, Cerebro Spinal Fluid Pulsation Artifact, Cardiovascular Imaging and Cardiac MRI.
 
Images, Movies, Sliders:
 MVP Parasternal  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Flow' (113).Open this link in a new window


• View the NEWS results for 'Flow' (7).Open this link in a new window.
 
Further Reading:
  News & More:
The super-fast MRI scan that could revolutionise heart failure diagnosis
Wednesday, 21 September 2022   by www.eurekalert.org    
MRI Resources 
Quality Advice - Contrast Enhanced MRI - IR - Spine MRI - Homepages - Brain MRI
 
Flow Related Enhancement
 
(FRE) Flow related enhancement could be seen most for blood flow, but also for other liquids with some MR imaging techniques, as an increase in intensity due to the washout of saturated spins. FRE provides positive contrast ("bright blood") of vascular details in time of flight MRA as well as the physiologic characterization of blood flow.
If stationary spins within the scanned region experience only an incomplete T1 relaxation between the repeated radio frequency (RF) excitations, this results in fewer signal of the stationary tissue (compared to inflowing blood with completely relaxed spins). The degree of the flow related enhancement is proportional to the blood flow velocity and the used repetition time. The use of flow compensation (gradient moment nulling) improves the FRE especially in gradient echo sequences.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Flow Related Enhancement' (10).Open this link in a new window

 
Further Reading:
  Basics:
Conventional MRI and MR Angiography of Stroke
2012   by www.mc.vanderbilt.edu    
Searchterm 'Sequences' was also found in the following services: 
spacer
News  (6)  Resources  (8)  Forum  (51)  
 
Fractional Nex Imaging
 
Fractional Nex imaging (GE Healthcare term for imaging with a Nex value less than 1) benefits from the conjugate symmetry of the k-space to reduce the number of phase encoding acquisitions. With fractional Nex imaging (similar to partial Fourier or Half Scan), just over half of the data are acquired and the data from the lower part of k-space are used to fill the upper part, without sampling the upper part. Fractional Nex imaging sequences use a number of excitations values between 0.5 and 1. These values are a bit misleading, because the number of phase encoding steps is reduced, and not the NEX.
Fractional Nex imaging reduces the scan time considerable, by preserving the same contrast between the tissues. The effect by acquiring fewer data points is that the signal to noise ratio decreases.

See also acronyms for 'partial averaging//fractional Nex imaging' from different manufacturers.
spacer
 
Further Reading:
  Basics:
Method and apparatus for subterranean formation flow imaging
   by www.google.com    
CHAPTER-12
   by www.cis.rit.edu    
  News & More:
A Practical Guide to Cardiovascular MRI
   by www.gehealthcare.com    
Searchterm 'Sequences' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (1) Open this link in a new window
G-SCANInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.esaote.de/04_kernspin/gscan/gscan.htm From Esaote S.p.A.; Esaote introduced the new G-SCAN at the RSNA in Dec. 2004. The G-SCAN covers almost all musculoskeletal applications including the spine. The tilting gantry is designed for scanning in weight-bearing positions. This unique MRI scanner is developed in line with the Esaote philosophy of creating high quality MRI systems that are easy to install and that have a low breakeven point.
Device Information and Specification
CLINICAL APPLICATION
CONFIGURATION
Spine, extremity, shoulder, flex coil, knee dual phased array, ankle//foot dual phased array, hand//wrist dual phased array
PULSE SEQUENCES
SE, GE, IR, STIR, TSE, 3D CE, GE-STIR, 3D GE, ME, TME, HSE
IMAGING MODES
Single, multislice, volume study, fast scan, multi slab, cine
FOV
100 up to 350 mm, 25 mm displayed
512 x 512
MEASURING MATRIX
256 x 256 maximum
MAGNET TYPE
Permanent
BORE DIAMETER
or W x H
33 cm H, open
POWER REQUIREMENTS
100/110/200/220/230/240 V
STRENGTH
25 mT/m
5-GAUSS FRINGE FIELD
180 cm
Passive
spacer

• View the DATABASE results for 'G-SCAN' (3).Open this link in a new window

MRI Resources 
Online Books - Contrast Enhanced MRI - - MRI Centers - Musculoskeletal and Joint MRI - Claustrophobia
 
previous      96 - 100 (of 190)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 January 2025]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]