Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Signal to Noise Ratio' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Signal to Noise Ratio' found in 1 term [] and 49 definitions []
previous     6 - 10 (of 50)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
Searchterm 'Signal to Noise Ratio' was also found in the following services: 
spacer
News  (3)  
 
B0
 
[B0] A conventional symbol for the main magnetic field strength (magnetic flux density or induction) in a MRI system. Although historically used, H0 (units of magnetic field strength, ampere//meter) should be distinguished from the more appropriate B0 [units of magnetic induction, tesla].
In current MR systems it has a constant value over time varying from 0.02 to 4 T. Field strengths of 0.5 T and above are generated with superconductive magnets. High field strengths have a better signal to noise ratio (SNR). The optimal imaging field strength for clinical imaging is between 0.5 and 2.0 T.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
spacer
 
Further Reading:
  Basics:
Factors influencing flip angle mapping in MRI: RF pulse shape, slice-select gradients, off-resonance excitation, and B0 inhomogeneities.
Tuesday, 1 August 2006   by www.ncbi.nlm.nih.gov    
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Penn researchers to get 7 Tesla whole-body MRI system
Monday, 28 August 2006   by www.eurekalert.org    
Optimizing SPIR and SPAIR fat suppression
Tuesday, 30 November 2004   by clinical.netforum.healthcare.philips.com    
Searchterm 'Signal to Noise Ratio' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (8) Open this link in a new window
Balanced SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with Steady Precession (TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG).
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Infarct 4 Chamber Cine  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Balanced Sequence' (5).Open this link in a new window

 
Further Reading:
  News & More:
Generic Eddy Current Compensation for Rapid Magnetic Resonance Imaging(.pdf)
   by www.switt.ch    
Magnetic resonance imaging guided musculoskeletal interventions at 0.23T: Chapter 4. Materials and methods
2002
MRI Resources 
Artifacts - Societies - Safety Products - Movies - Crystallography - Homepages
 
Coil DiameterInfoSheet: - Coils - 
Intro, 
Overview, 
etc.
 
MRI coils with a small diameter obtain a higher signal to noise ratio (SNR) than coils with a large diameter. A surface coil with a small diameter can be used to improve the resolution because the area of interest is around the optimal signal depth. The field of view of a (superficial) surface coil is half the diameter of the coil. A disadvantage is a lower sensitive volume of the coil. By combining several coils with small diameters (phased array coil) to record the signal simultaneously and independently, the SNR level improves considerably.
spacer

• View the DATABASE results for 'Coil Diameter' (3).Open this link in a new window

Searchterm 'Signal to Noise Ratio' was also found in the following services: 
spacer
News  (3)  
 
Contrast Enhanced FASTInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(CE-FAST) In this technique, the MR signal is sampled immediately prior to each RF pulse. Because the signal is formed by a true spin echo, its contrast is predominantly T2-, rather than T2*-based and is less sensitive to artifacts and signal losses related to field non-uniformity and susceptibility variation. While the signal to noise ratio is limited, the CE-FAST method has the advantage of good contrast.

See Contrast Enhanced Gradient Echo Sequence and Gradient Echo Sequence.
spacer

• View the DATABASE results for 'Contrast Enhanced FAST' (5).Open this link in a new window

Searchterm 'Signal to Noise Ratio' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (8) Open this link in a new window
Contrast to Noise Ratio
 
(CNR) In Magnetic Resonance Imaging MRI, Contrast to noise ratio is the relationship of signal intensity differences between two regions, scaled to image noise. Improving CNR increases perception of the distinct differences between two clinical areas of interest. A contrast to noise ratio is a summary of SNR and contrast. It is the difference in SNR between two relevant tissue types.
(A and B): CNR = SNRA - SNRB

See also Signal Intensity, Signal to Noise Ratio and Medical Imaging.
spacer

• View the DATABASE results for 'Contrast to Noise Ratio' (2).Open this link in a new window


• View the NEWS results for 'Contrast to Noise Ratio' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
Contrast mechanisms in magnetic resonance imaging
2004   by www.iop.org    
Optimal k-Space Sampling for Dynamic Contrast-Enhanced MRI with an Application to MR Renography
Thursday, 5 November 2009   by www.ncbi.nlm.nih.gov    
MRI Resources 
NMR - MRCP - Safety Products - Supplies - Stent - Jobs pool
 
previous      6 - 10 (of 50)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]