Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Spectroscopy' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Spectroscopy' found in 12 terms [] and 83 definitions []
previous     6 - 10 (of 95)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
Searchterm 'Spectroscopy' was also found in the following services: 
spacer
News  (16)  Resources  (59)  Forum  (3)  
 
Depth Resolved SpectroscopyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Spectroscopy pool -
 
(DRESS) Depth resolved surface spectroscopy is a localization method that employ gradients to select the region from which spectra are acquired.
spacer
Searchterm 'Spectroscopy' was also found in the following service: 
spacer
Radiology  (1) Open this link in a new window
Point Resolved SpectroscopyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PRESS) Point resolved spectroscopy is a multi echo single shot technique to obtain spectral data. PRESS is a 90°-180°-180° (slice selective pulses) sequence. The 90° radio frequency pulse rotates the spins in the yx-plane, followed by the first 180° pulse (spin rotation in the xz-plane) and the second 180° pulse (spin rotation in the xy-plane), which gives the signal.
With the long echo times used in PRESS, there is a better visualization of metabolites with longer relaxation times. Many of the metabolites depicted by stimulated echo technique are not seen on point resolved spectroscopy, but PRESS is less susceptible to motion, diffusion, and quantum effects and has a better SNR than stimulated echo acquisition mode (STEAM).
spacer

• View the DATABASE results for 'Point Resolved Spectroscopy' (3).Open this link in a new window

 
Further Reading:
  Basics:
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
MRI Resources 
Equipment - Contrast Enhanced MRI - Knee MRI - Anatomy - Devices - Mobile MRI Rental
 
Magnetic Resonance SpectroscopyMRI Resource Directory:
 - Spectroscopy pool -
 
(MRS / MRSI - Magnetic Resonance Spectroscopic Imaging) A method using the NMR phenomenon to identify the chemical state of various elements without destroying the sample. MRS therefore provides information about the chemical composition of the tissues and the changes in chemical composition, which may occur with disease processes.
Although MRS is primarily employed as a research tool and has yet to achieve widespread acceptance in routine clinical practice, there is a growing realization that a noninvasive technique, which monitors disease biochemistry can provide important new information for the clinician.
The underlying principle of MRS is that atomic nuclei are surrounded by a cloud of electrons, which very slightly shield the nucleus from any external magnetic field. As the structure of the electron cloud is specific to an individual molecule or compound, then the magnitude of this screening effect is also a characteristic of the chemical environment of individual nuclei.
In view of the fact that the resonant frequency is proportional to the magnetic field that it experiences, it follows that the resonant frequency will be determined not only by the external applied field, but also by the small field shift generated by the electron cloud. This shift in frequency is called the chemical shift (see also Chemical Shift). It should be noted that chemical shift is a very small effect, usually expressed in ppm of the main frequency. In order to resolve the different chemical species, it is therefore necessary to achieve very high levels of homogeneity of the main magnetic field B0. Spectra from humans usually require shimming the magnet to approximately one part in 100. High resolution spectra of liquid samples demand a homogeneity of about one part in 1000.
In addition to the effects of factors such as relaxation times that can affect the NMR signal, as seen in magnetic resonance imaging, effects such as J-modulation or the transfer of magnetization after selective excitation of particular spectral lines can affect the relative strengths of spectral lines.
In the context of human MRS, two nuclei are of particular interest - H-1 and P-31. (PMRS - Proton Magnetic Resonance Spectroscopy) PMRS is mainly employed in studies of the brain where prominent peaks arise from NAA, choline containing compounds, creatine and creatine phosphate, myo-inositol and, if present, lactate; phosphorus 31 MR spectroscopy detects compounds involved in energy metabolism (creatine phosphate, adenosine triphosphate and inorganic phosphate) and certain compounds related to membrane synthesis and degradation. The frequencies of certain lines may also be affected by factors such as the local pH. It is also possible to determine intracellular pH because the inorganic phosphate peak position is pH sensitive.
If the field is uniform over the volume of the sample, "similar" nuclei will contribute a particular frequency component to the detected response signal irrespective of their individual positions in the sample. Since nuclei of different elements resonate at different frequencies, each element in the sample contributes a different frequency component. A chemical analysis can then be conducted by analyzing the MR response signal into its frequency components.

See also Spectroscopy.
spacer

• View the DATABASE results for 'Magnetic Resonance Spectroscopy' (8).Open this link in a new window


• View the NEWS results for 'Magnetic Resonance Spectroscopy' (3).Open this link in a new window.
 
Further Reading:
  News & More:
Accuracy of Proton Magnetic Resonance Spectroscopy in Distinguishing Neoplastic From Non-neoplastic Brain Lesions
Saturday, 2 December 2023   by www.cureus.com    
Searchterm 'Spectroscopy' was also found in the following services: 
spacer
News  (16)  Resources  (59)  Forum  (3)  
 
Functional Brain MR SpectroscopyMRI Resource Directory:
 - Functional MRI -
 
The use of MR spectroscopy for acquiring functional activation of the brain.
There are two possible approaches:
In the first, localized spectra of brain water are acquired and subtle changes in these spectra reflect the biophysical water environment. Changes in T2 due to deoxyhaemoglobin concentration may be detected in this way. The disadvantages of poor spatial resolution are to some extent offset by the high signal to noise ratio SNR of the spectroscopic data.
An alternative approach is to use MR spectroscopy directly to detect metabolites that are altered by brain activation. These include lactate and glucose. Such experiments have inherently poor spatial and temporal resolution, but do give a direct indication of the metabolic response of the brain to functional activation.
spacer
Searchterm 'Spectroscopy' was also found in the following service: 
spacer
Radiology  (1) Open this link in a new window
Spatially Localized Spectroscopy
 
Process by which regions of tissue are selectively sampled to produce spectra from defined volumes in space. These methods may be employed to sample a single region in space (single voxel method) or multiple regions simultaneously (multivoxel methods). The spatial selectivity can be achieved by a variety of methods including surface coils, surface coils in conjunction with RF gradient methods, or RF pulses in combination with switched magnetic field gradients, for example, volume-selective excitation. An indirect method of achieving spatial selectivity is the destruction of coherence of the magnetization in regions that lie outside the region of interest. A variety of spatial encoding schemes have been employed for multivoxel localization. See Chemical shift imaging.
spacer
MRI Resources 
Shielding - Quality Advice - Implant and Prosthesis - Used and Refurbished MRI Equipment - Mass Spectrometry - Journals
 
previous      6 - 10 (of 95)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]