| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | 'Susceptibility Artifact' | |
Result : Searchterm 'Susceptibility Artifact' found in 1 term [] and 15 definitions [], (+ 5 Boolean[] results
| previous 6 - 10 (of 21) nextResult Pages : [1] [2 3 4] [5] | | | | Searchterm 'Susceptibility Artifact' was also found in the following services: | | | | |
| | | | | | | |
| |
|
( FISP) A fast imaging sequence, which attempts to combine the signals observed separately in the FADE sequence, generally sensitive about magnetic susceptibility artifacts and imperfections in the gradient waveforms. Confusingly now often used to refer to a refocused FLASH type sequence. This sequence is very similar to FLASH, except that the spoiler pulse is eliminated. As a result, any transverse magnetization still present at the time of the next RF pulse is incorporated into the steady state.
FISP uses a RF pulse that alternates in sign.
Because there is still some remaining transverse magnetization at the time of the RF pulse, a RF pulse of a degree flips the spins less than a degree from the longitudinal axis.
With small flip angles, very little longitudinal magnetization is lost and the image contrast becomes almost independent of T1. Using a very short TE (with TR 20-50 ms, flip angle 30-45°) eliminates T2* effects, so that the images become proton density weighted. As the flip angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is in the domain of large flip angles and short TR that FISP exhibits vastly different contrast to FLASH type sequences.
Used for T1 orthopedic imaging, 3D MPR, cardiography and angiography. | | | | • View the DATABASE results for 'Fast Imaging with Steady State Precession' (5).
| | | | Further Reading: | Basics:
|
|
| |
| | | | | |
| |
|
(FLASH) A fast sequence producing signals called gradient echo with low flip angles. FLASH sequences are modifications, which incorporate or remove the effects of transverse coherence respectively.
FLASH uses a semi-random spoiler gradient after each echo to spoil the steady state (to destroy any remaining transverse magnetization) by causing a spatially dependent phase shift. The transverse steady state is spoiled but the longitudinal steady state depends on the T1 values and the flip angle. Extremely short TR times are possible, as a result the sequence provides a mechanism for gaining extremely high T1 contrast by imaging with TR times as brief as 20 to 30 msec while retaining reasonable signal levels. It is important to keep the TE as short as possible to suppress susceptibility artifacts.
The T1 contrast depends on the TR as well as on flip angle, with short TE.
Small flip angles and short TR results in proton density, and long TR in T2* weighting.
With large flip angles and short TR result T1 weighted images.
TR and flip angle adjustment:
TR 3000 ms, Flip Angle 90°
TR 1500 ms, Flip Angle 45°
TR 700 ms, Flip Angle 25°
TR 125 ms, Flip Angle 10°
The apparent ability to trade TR against flip angle for purposes of contrast and the variation in SNR as the scan time (TR) is reduced.
See also Gradient Echo Sequence. | | | | | | • View the DATABASE results for 'Fast Low Angle Shot' (5).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Susceptibility Artifact' was also found in the following services: | | | | |
| | |
| |
|
Ferromagnetism is a phenomenon by which a material can exhibit a spontaneous magnetization: a net magnetic moment in the absence of an external magnetic field. More recently: a material is ferromagnetic, only if all of its magnetic ions add a positive contribution to the net magnetization (for differentiation to ferrimagnetic and antiferromagnetic materials). If some of the magnetic ions subtract from the net magnetization (if they are partially anti-aligned), then the material is ferrimagnetic. If the ions anti-align completely so as to have zero net magnetization, despite the magnetic ordering, then it is an antiferromagnet. All of these alignment effects only occur at temperatures below a certain critical temperature, called the Curie temperature (for ferromagnets and ferrimagnets) or the Néel temperature (for antiferromagnets). Typical ferromagnetic materials are iron, cobalt, and nickel.
In MRI ferromagnetic objects, even very small ones, as implants or incorporations distort the homogeneity of the main magnetic field and cause susceptibility artifacts. | | | | • View the DATABASE results for 'Ferromagnetism' (7).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
| | | | • View the DATABASE results for 'Field Strength' (123).
| | | • View the NEWS results for 'Field Strength' (2).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |