Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Transverse Magnetization' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Transverse Magnetization' found in 1 term [] and 42 definitions []
previous     16 - 20 (of 43)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9]
MRI Resources 
Pacemaker - Mass Spectrometry - Shoulder MRI - MRI Physics - Safety Products - Stimulator pool
 
Bipolar Gradient Pulse
 
Bipolar gradients are two gradients with the same magnitude but opposite gradient direction. A bipolar gradient pulse is produced if one of the bipolar gradients is switched e.g., in negative direction and then switched in the opposite direction for an equivalent amount of time.
Bipolar gradients are used e.g. in phase contrast and diffusion weighted sequences. A bipolar gradient pulse pair produces a phase shift, which depends on the velocity component along this gradient. Motion along a bipolar gradient pulse pair results in a flow-induced phase shift of the transverse magnetization. The bipolar gradient pulse pair will not affect stationary spins. The amount of phase shifts depends on the area of each gradient pulse, and distance between the pulses. An echo occurring after such a gradient is flow compensated for velocity. A slight shift in the balance of this gradient will introduce a defined flow sensitivity of the pulse sequence.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer
 
• Related Searches:
    • Diffusion Weighted Sequence
    • Phase Contrast Sequence
    • Fast Field Echo
    • Pulsed Gradients
    • Diffusion Weighted Whole Body Imaging
MRI Resources 
Societies - Raman Spectroscopy - MRA - Supplies - Education - Stimulator pool
 
Coherent Gradient EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.
spacer

• View the DATABASE results for 'Coherent Gradient Echo' (6).Open this link in a new window

MRI Resources 
Portals - Supplies - Crystallography - Functional MRI - Used and Refurbished MRI Equipment - Universities
 
Decay
 
spacer

• View the DATABASE results for 'Decay' (37).Open this link in a new window

MRI Resources 
Absorption and Emission - Lung Imaging - Databases - Supplies - Process Analysis - Nerve Stimulator
 
Dephasing Gradient
 
Magnetic field gradient pulse used to create spatial variation of phase of transverse magnetization. For example, it may be applied prior to signal detection in the presence of a magnetic field gradient with opposite polarity (or of the same polarity if separated by a refocusing RF pulse) so that the resulting gradient echo signal will represent a more complete sampling of the Fourier transformation of the desired image.

See also Spoiler Gradient Pulse.
spacer

• View the DATABASE results for 'Dephasing Gradient' (6).Open this link in a new window

 
Further Reading:
  Basics:
RARE
Monday, 3 December 2012   by www2.warwick.ac.uk    
MRI Resources 
Raman Spectroscopy - Online Books - Education pool - Services and Supplies - Stimulator pool - Corporations
 
Excitation
 
Sent (inducing, transferring) energy into the 'spinning' nuclei via radio frequency pulse, which puts the nuclei into a higher energy state. By producing a net transverse magnetization a MRI system can observe a response from the excited system.
spacer

• View the DATABASE results for 'Excitation' (108).Open this link in a new window

 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
MRI Resources 
IR - NMR - Image Quality - Calculation - Patient Information - Diffusion Weighted Imaging
 
previous      16 - 20 (of 43)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]