| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Voxel' found in 4 terms [] and 35 definitions []
| previous 21 - 25 (of 39) nextResult Pages : [1] [2 3 4 5 6 7 8] | | | | Searchterm 'Voxel' was also found in the following services: | | | | |
| | |
| |
|
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Cylindrical Wide Short Bore
Opt. (WIP) Single and Multi Voxel
SE, FE, IR, FastSE, FastIR, FastFLAIR, Fast STIR, FastFE, FASE, Hybrid EPI, Multi Shot EPI; Angiography: 2D(gate/non-gate)/3D TOF, SORS-STC
IMAGING MODES
Single, multislice, volume study
TE
8 msec min. SE; 1.2 msec min. FE
less than 0.015 (256x256)
1.0 min. 2-DFT: 0.2 min. 3-DFT
32-1024, phase;; 64-1024, freq.
65.5 cm, patient aperture
4050 kg (bare magnet incl. L-He)
COOLING SYSTEM TYPE
Closed-loop water-cooled
Liquid helium: approx. less than 0.05 L/hr
Passive, active, auto-active
| | | | | |
| | | Searchterm 'Voxel' was also found in the following services: | | | | |
| | |
| |
|
(FOV) Defined as the size of the two or three dimensional spatial encoding area of the image. Usually defined in units of mm². The FOV is the square image area that contains the object of interest to be measured. The smaller the FOV, the higher the resolution and the smaller the voxel size but the lower the measured signal.
Useful for decreasing the scantime is a field of view different in the frequency and phase encoding directions ( rectangular field of view - RFOV).
The magnetic field homogeneity decreases as more tissue is imaged (greater FOV). As a result the precessional frequencies change across the imaging volume. That can be a problem for fat suppression imaging. This fat is precessing at the expected frequency only in the center of the imaging volume. E.g. frequency specific fat saturation pulses become less effective when the field of view is increased. It is best to use smaller field of views when applying fat saturation pulses.
Image Guidance
Smaller FOV required higher gradient strength and concludes low signal. Therefore you have to find a compromise between these factors.
The right choice of the field of view is important for MR image quality. When utilizing small field of views and scanning at a distance from the isocenter (more problems with artifacts) it is obviously important to ensure that the region of interest is within the scanning volume.
A smaller FOV in one direction is available with the function rectangular field of view (RFOV).
See also Field Inhomogeneity Artifact. | | | | | | • View the DATABASE results for 'Field of View' (27).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | | |
| |
|
Motion of material being imaged, particularly flowing blood, can result in many possible effects in the images.
Fast moving blood produces flow voids,
blood flowing in to the outer slices of an imaging volume produces high signals ( flow related enhancement, entry slice phenomenon),
pulsatile flow creates ghost images of the vessel extending across the image in the phase encoding direction (image misregistration).
Flow-related dephasing occurring when spin isochromats are moving with different velocities in an external gradient field G so that they acquire different phases. When these phases vary by more then 180° within a voxel, substantial spin dephasing results leading to considerable intravascular signal loss.
These effects can be understood as caused by time of flight effects (washout or washin due to motion of nuclei between two consecutive spatially selective RF excitations, repeated in times on the order of, or shorter than the relaxation times of blood) or phase shifts (delay between phase encoding and frequency encoding) that can be acquired by excited spins moving along magnetic field gradients.
The inconsistency of the signal resulting from pulsatile flow can lead to artifacts in the image. The flow effects can also be exploited for MR angiography or flow measurements.
See also Flow Artifact. | | | | | | • View the DATABASE results for 'Flow Effects' (16).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'Voxel' was also found in the following services: | | | | |
| | |
| |
|
The word gradient (from grade) means the inclination of a surface along a given direction. In MRI, gradient stands for gradient field and/or gradient coil. Inside the main magnet are three gradient coils located, which produce the desired gradient (magnetic) fields. These fields are used to alter (collectively and sequentially) the influence of the static magnetic field B0 on the imaged object by inc- or decreasing the field strength and changing the direction.
Through this influence selective spatial excitation and spatial encoding (each voxel resonate at a different frequency) is possible. Gradients are also utilized in another way for fast imaging sequences. See also Slew Rate and Duty Cycle. | | | | • View the DATABASE results for 'Gradient' (316).
| | | • View the NEWS results for 'Gradient' (2).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'Voxel' was also found in the following services: | | | | |
| | |
| |
|
A small linear magnetic field applied in addition to (superimposed on) the large static magnetic field in a MRI scanner. The strength ( amplitude) and direction of the gradient fields change during the scan, which allows each small volume element ( voxel) within the imaging volume to resonate at a different frequency. In this way, spatial encoding may be performed. | | | | • View the DATABASE results for 'Gradient Magnetic Field' (6).
| | | | Further Reading: | Basics:
|
|
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |