Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Zero Filling' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Zero Filling' found in 1 term [] and 3 definitions [], (+ 2 Boolean[] results
1 - 5 (of 6)     next
Result Pages : [1]  [2]
MRI Resources 
Colonography - MRI Technician and Technologist Schools - Diffusion Weighted Imaging - Sequences - Functional MRI - MR Guided Interventions
 
Zero Filling
 
Substitution of zeroes for unmeasured data points in order to increase the matrix size of the new data prior to Fourier transformation of MR data. This can be equivalent to performing an interpolation (ZIP - zero fill interpolation processing) in the transformed data, resulting in pixels smaller than the actual resolution of the image.
spacer
 
• Share the entry 'Zero Filling':  Facebook  Twitter  LinkedIn  
MRI Resources 
Knee MRI - Guidance - Databases - Image Quality - Safety Products - Resources
 
Matrix Size
 
The number of data points collected in one, two or all three directions. Normally used for the 2D in plane sampling. The display matrix may be different from the acquisition matrix, although the latter determines the resolution. Measurement time may be saved by not acquiring raw data lines corresponding to high resolution. Not measured rows are filled with zeroes prior to the image calculation. A square image is the result of an interpolation in phase encoding direction. See also Zero Filling.
mri safety guidance
Image Guidance
The chosen matrix size effects scan time, resolution and SNR. Reduced measurement matrixes decrease the scan time and the resolution by increased SNR.
spacer

• View the DATABASE results for 'Matrix Size' (4).Open this link in a new window

MRI Resources 
Intraoperative MRI - Shoulder MRI - MRI Centers - Movies - Blood Flow Imaging - Pediatric and Fetal MRI
 
Sinc InterpolationMRI Resource Directory:
 - Calculation -
 
A method of interpolating image data by zero filling the high spatial-frequency components of the raw data so that after Fourier transformation the image matrix size has been increased. This method can significantly improve the image display.
spacer
MRI Resources 
Blood Flow Imaging - Non-English - Breast Implant - Universities - Lung Imaging - Directories
 
Truncation ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
DESCRIPTION
Edge ringing, syrinx-like stripe
REASON
Sharp changes in intensity (incomplete digitization of the echo)
HELP
Take more samples
A data truncation artifact may occur when the interface between high and low signal intensities is encountered in one imaging plane. The 2D-FT techniques transform the MR signal to spatial intensity image data with frequency and phase information encoding each axis in the plane of the scan. This artifact is found in both frequency and phase axes. Artifactual ripples adjacent to edges in an image or sharp features in a spectrum, caused by omission of higher frequency terms in Fourier transformation, particularly with the use of zero filling to replace unsampled higher frequencies.
Complex shapes are specified by series of sine and cosine waves of various frequencies, phase and amplitude. Some shapes are more difficult to encode than others. The most difficult shapes to represent with Fourier series of terms are waveforms with instantaneous transitions, tissue discontinuities or edges. The low-frequency components of the series describe the overall shape of the step function. Higher frequency components are needed to describe the corners if the step function more accurately. If not enough samples are taken, these areas cannot be accurately represented. The truncation of the infinite data series results in a ringing artifact because of the inability to accurately approximate this tissue discontinuity with a shorter truncated data set. Therefore, the ringing that occurs at all tissue boundaries on MR is called truncation artifact.
mri safety guidance
Image Guidance
This problem can be easily resolved by taking more samples - a higher acquisition matrix and/or a smaller FOV. See Gibbs Artifact and Gibbs Phenomenon.
spacer

• View the DATABASE results for 'Truncation Artifact' (2).Open this link in a new window

 
Further Reading:
  News & More:
Magnetic Resonance Imaging (MRI)
2003   by www.hull.ac.uk    
MRI Resources 
Homepages - - Breast MRI - Chemistry - Hospitals - Nerve Stimulator
 
Superconducting Magnet
 
Superconducting magnets are electromagnets that are partially built from superconducting materials and therefore reach much higher magnetic field intensity.
The coil windings of superconducting magnets are made of wires of a type 2 superconductor (mostly used is niobium-titanium - up to 15 Tesla the critical temperature is less then 10 Kelvin). These coils have no resistance when operated at temperatures near absolute zero (-273.15°C, -459°F, 0 K).
Liquid helium (4.2 K) is commonly used as a coolant (sometimes in addition with a second cryogen liquid nitrogen as an intermediate thermal shield to reduce the boil-off rate of liquid helium), which consequently conclude refilling (intervals: liquid helium ~ 3 month, liquid nitrogen ~ 2 weeks). There are cryogen-free superconducting magnets with a closed-cycle refrigerating system at the horizon. Superconducting magnets typically exhibit field strengths of greater than 0.5 T, operate clinically up to 3 T, and have a horizontal field orientation, which makes them prone to missile effects without significant magnetic shielding.
See also Quenching.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
spacer

• View the DATABASE results for 'Superconducting Magnet' (15).Open this link in a new window


• View the NEWS results for 'Superconducting Magnet' (3).Open this link in a new window.
 
Further Reading:
  Basics:
Superconducting Magnets
   by hyperphysics.phy-astr.gsu.edu    
Magnetic Field of the Strongest Magnet
2003   by hypertextbook.com    
  News & More:
A hot time for cold superconductors
Tuesday, 9 December 2003   by www.brightsurf.com    
MRI Resources 
Education pool - Bioinformatics - Stent - Examinations - Health - Homepages
 
     1 - 5 (of 6)     next
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 21 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]