| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | | | | Searchterm 'epi' was also found in the following services: | | | | |
| | |
| |
|
This method synchronize the heartbeat with the beginning of the TR, whereat the r wave is used as the trigger. Cardiac gating times the acquisition of MR data to physiological motion in order to minimize motion artifacts. ECG gating techniques are useful whenever data acquisition is too slow to occur during a short fraction of the cardiac cycle.
Image blurring due to cardiac-induced motion occurs for imaging times of above approximately 50 ms in systole, while for imaging during diastole the critical time is of the order of 200-300 ms. The acquisition of an entire image in this time is only possible with using ultrafast MR imaging techniques. If a series of images using cardiac gating or real-time echo planar imaging EPI are acquired over the entire cardiac cycle, pixel-wise velocity and vascular flow can be obtained.
In simple cardiac gating, a single image line is acquired in each cardiac cycle. Lines for multiple images can then be acquired successively in consecutive gate intervals. By using the standard multiple slice imaging and a spin echo pulse sequence, a number of slices at different anatomical levels is obtained. The repetition time (TR) during a ECG-gated acquisition equals the RR interval, and the RR interval defines the minimum possible repetition time (TR). If longer TRs are required, multiple integers of the RR interval can be selected. When using a gradient echo pulse sequence, multiple phases of a single anatomical level or multiple slices at different anatomical levels can be acquired over the cardiac cycle.
Also called cardiac triggering. | | | | | | | | | | | Further Reading: | Basics:
|
|
| |
| | | | | |
| |
|
Cine sequences used in cardiovascular MRI are collection of images (usually at the same spatial location) covering of one full period of cardiac cycle or over several periods in order to obtain complete coverage.
The pulse sequence used, is either a standard gradient echo pulse sequence, a segmented data acquisition, a gradient echo EPI sequence or a gradient echo with balanced gradient waveform.
In cardiac gating studies it is possible to assign consecutive lines either to different images, yielding a multiphase sequence with as many images as lines, or the lines are grouped together into segments and assigned to the same image. The overall time to acquire such a segment has to be small compared to the RR-interval of the cardiac cycle, i. e. 50 ms, and hence contains typically 8 to 16 image lines.
This strategy is called segmented data acquisition, and has the advantage of reducing overall imaging time for cardiac images so that they can be acquired within a breath hold, but obviously decreasing the temporal resolution of each individual image.
This method shows dynamic processes, such as the ejection of blood out of the heart into the aorta, by means of fast imaging and displaying the resulting images in a sequential-loop, the impression of a real-time movie is generated. Ejection fractions and stroke volumes calculated from these cine MRI images in different cardiac axes have been shown to be more accurate than any other imaging modality. See also Cardiac Gating. | | | | | | • View the DATABASE results for 'Cine Sequence' (2).
| | | | Further Reading: | News & More:
|
|
| |
| | | | | |
| |
|
A large network of interconnecting blood vessels at the base of the brain that when visualized resembles a circle, the arteries effectively act as anastomoses for each other. This means that if any one of the communicating arteries becomes blocked, blood can flow from another part of the circle to ensure that blood flow is not compromised.
The circle of Willis is formed by both the internal carotid arteries, entering the brain from each side and the basilar artery, entering posteriorly. The connection of the vertebral arteries forms the basilar artery. The basilar artery divides into the right and left posterior cerebral arteries.
The internal carotid arteries trifurcate into the anterior cerebral artery, middle cerebral artery, and posterior communicating artery.
The two anterior cerebral arteries are joined together anteriorly by the anterior communicating artery. The posterior communicating arteries join the posterior cerebral arteries, completing the circle of Willis. The time of flight angiography MRI technique allows imaging of the circle of Willis without the need of a contrast medium (best results with high field MRI). A cerebrovasular contrast enhanced magnetic resonance angiography ( MRA) d epicts the circle of Willis in addition to the vessels of the neck (carotid and vertebral arteries) with one bolus injection of a contrast agent.
For Ultrasound Imaging (USI) see Cerebrovascular Ultrasonography at Medical-Ultrasound-Imaging.com. | | | | | | • View the DATABASE results for 'Circle of Willis' (5).
| | | | Further Reading: | News & More:
|
|
| |
| | | Searchterm 'epi' was also found in the following services: | | | | |
| | |
| |
|
| | | | • View the DATABASE results for 'Code 7228' (4).
| | | | Further Reading: | Basics:
|
|
| |
| | | | | |
| |
|
( CW) A technique for studying NMR by continuously applying RF radiation to the sample and slowly swe eping either the RF frequency or the magnetic field through the resonance values; now largely superceded by pulse MR technique. | | | | • View the DATABASE results for 'Continuous Wave NMR' (2).
| | | | |
| | | | |
| |
| | | |
|
| |
| Look Ups |
| |