Diffusion weighted imaging can be performed similar to the phase contrast angiography sequence. The gradients must be increased in amplitude to depict the much slower motions of molecular diffusion in the body.
While a T1 weightedMRIpulse sequence is diffusion sensitive, a quantitative diffusionpulse sequence was introduced by Steijskal and Tanner. Its characteristic features are two strong symmetrical gradient lobes placed on either side of the 180° refocusing pulse in a spin echosequence. These symmetrical gradient lobes have the sole purpose of enhancing dephasing of spins, thereby accelerating intravoxel incoherent motion (IVIM) signal loss.
Dephasing is proportional to the square of the time (diffusion time) during which the gradients are switched on and the strength of the applied gradient field. Therefore, the use of high field gradient systems with faster and more sensitive sequences, make diffusion weighting more feasible.
Areas in which the protons diffuse rapidly (swollen cells in early stroke, less restriction to diffusion) will show an increased signal when the echo is measured relative to areas in which diffusion is restricted.
For increased accuracy of diffusion measurement and image enhancement, useful motion correction techniques such as navigator echo and other methods should be used. In addition to this, applying the b-value calculated by the strength and duration of motion probing gradients with a high rate of accuracy is very important.
(SE) The Reappearance of the MR signal after the FID has apparently died away, as a result of the effective reversal (rephasing) of the dephasing spins by techniques such as specific RF pulsesequences or pairs of field gradient pulses, applied in time shorter than or on the order of T2. Proper selection of the TE time of the pulse sequence can help to control the amount of T1 or T2contrast present in the image. Pulse sequences of the spin echo type, usually employs a 90° pulse, followed by one or more 180° pulses to eliminate field inhomogeneity and chemical shift effects at the echo. Caused by this 180° refocusing pulse, spin echo or fast spin echo (FSE, TSE) sequences are more robust against e.g. susceptibility
artifacts than sequences of the gradient echo type.