Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 't2' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 't2' found in 8 terms [] and 150 definitions []
previous     26 - 30 (of 158)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 't2' was also found in the following services: 
spacer
News  (28)  Resources  (5)  Forum  (67)  
 
Contrast AgentsForum -
related threadsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Contrast agents are chemical substances introduced to the anatomical or functional region being imaged, to increase the differences between different tissues or between normal and abnormal tissue, by altering the relaxation times. MRI contrast agents are classified by the different changes in relaxation times after their injection.
•
Positive contrast agents cause a reduction in the T1 relaxation time (increased signal intensity on T1 weighted images). They (appearing bright on MRI) are typically small molecular weight compounds containing as their active element Gadolinium, Manganese, or Iron. All of these elements have unpaired electron spins in their outer shells and long relaxivities.
Some typical contrast agents as gadopentetate dimeglumine, gadoteridol, and gadoterate meglumine are utilized for the central nervous system and the complete body; mangafodipir trisodium is specially used for lesions of the liver and gadodiamide for the central nervous system.
•
Negative contrast agents (appearing predominantly dark on MRI) are small particulate aggregates often termed superparamagnetic iron oxide (SPIO). These agents produce predominantly spin spin relaxation effects (local field inhomogeneities), which results in shorter T1 and T2 relaxation times.
SPIO's and ultrasmall superparamagnetic iron oxides (USPIO) usually consist of a crystalline iron oxide core containing thousands of iron atoms and a shell of polymer, dextran, polyethyleneglycol, and produce very high T2 relaxivities. USPIOs smaller than 300 nm cause a substantial T1 relaxation. T2 weighted effects are predominant.
•
A special group of negative contrast agents (appearing dark on MRI) are perfluorocarbons (perfluorochemicals), because their presence excludes the hydrogen atoms responsible for the signal in MR imaging.

The design objectives for the next generation of MR contrast agents will likely focus on prolonging intravascular retention, improving tissue targeting, and accessing new contrast mechanisms. Macromolecular paramagnetic contrast agents are being tested worldwide. Preclinical data shows that these agents demonstrate great promise for improving the quality of MR angiography, and in quantificating capillary permeability and myocardial perfusion.
Ultrasmall superparamagnetic iron oxide (USPIO) particles have been evaluated in multicenter clinical trials for lymph node MR imaging and MR angiography, with the clinical impact under discussion. In addition, a wide variety of vector and carrier molecules, including antibodies, peptides, proteins, polysaccharides, liposomes, and cells have been developed to deliver magnetic labels to specific sites. Technical advances in MR imaging will further increase the efficacy and necessity of tissue-specific MRI contrast agents.

See also Adverse Reaction and Nephrogenic Systemic Fibrosis.

See also the related poll result: 'The development of contrast agents in MRI is'
 
Images, Movies, Sliders:
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradContrast Agents,  Safety of Contrast Agents
spacer
Medical-Ultrasound-Imaging.comUltrasound Contrast Agents,  Ultrasound Contrast Agent Safety
spacer
 
• Related Searches:
    • Gd Labeled Albumin
    • Contrast Medium
    • Myocardial Late Enhancement
    • Paramagnetism
    • Lumbar Spine MRI
 
Further Reading:
  Basics:
Analysis of MRI contrast agents
Thursday, 17 November 2022   by www.sciencedaily.com    
New guidelines urge caution on use of contrast agents during MR scans
Tuesday, 8 August 2017   by www.dotmed.com    
New Study Sheds Light on Safety of Gadolinium-Based Contrast Agents
Wednesday, 29 November 2017   by www.empr.com    
A safer approach for diagnostic medical imaging
Monday, 29 September 2014   by www.eurekalert.org    
Manganese-based MRI contrast agents: past, present and future
Friday, 4 November 2011   by www.ncbi.nlm.nih.gov    
  News & More:
Brain imaging method may aid mild traumatic brain injury diagnosis
Tuesday, 16 January 2024   by parkinsonsnewstoday.com    
A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors
Thursday, 18 January 2024   by www.dovepress.com    
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging
Tuesday, 27 September 2022   by www.pharmacytimes.com    
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol
Saturday, 5 February 2022   by www.ncbi.nlm.nih.gov    
Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles
Tuesday, 11 January 2022   by pubmed.ncbi.nlm.nih.gov    
Manganese enhanced MRI provides more accurate details of heart function after a heart attack
Tuesday, 11 May 2021   by www.news-medical.net    
Gadopiclenol: positive results for Phase III clinical trials
Monday, 29 March 2021   by www.pharmiweb.co    
Gadolinium-Based Contrast Agents Hypersensitivity: A Case Series
Friday, 4 December 2020   by www.dovepress.com    
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR
Monday, 8 March 2021   by www.diagnosticimaging.com    
Water-based non-toxic MRI contrast agents
Monday, 11 May 2020   by chemistrycommunity.nature.com    
New method to detect early-stage cancer identified by Georgia State, Emory research team
Friday, 7 February 2020   by www.eurekalert.org    
Researchers Brighten Path for Creating New Type of MRI Contrast Agent
Friday, 7 February 2020   by www.newswise.com    
Manganese-based MRI contrast agent may be safer alternative to gadolinium-based agents
Wednesday, 15 November 2017   by www.eurekalert.org    
Sodium MRI May Show Biomarker for Migraine
Friday, 1 December 2017   by psychcentral.com    
A natural boost for MRI scans
Monday, 21 October 2013   by www.eurekalert.org    
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging
Tuesday, 28 June 2011   by scienceline.org    
MRI Resources 
Corporations - Universities - Spine MRI - Lung Imaging - Stent - MRI Training Courses
 
Driven EquilibriumInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
In fast imaging sequences driven equilibrium sensitizes the sequence to variations in T2. This MRI technique turns transverse magnetization Mxy to the longitudinal axis using a pulse rather than waiting for T1 relaxation.
The first two pulses form a spin echo and, at the peak of the echo, a second 90° pulse returns the magnetization to the z-axis in preparation for a fresh sequence. In the absence of T2 relaxation, then all the magnetization can be returned to the z-axis. Otherwise, T2 signal loss during the sequence will reduce the final z-magnetization.
The advantage of this sequence type is, that both longitudinal and also transverse magnetization are back to equilibrium in a shorter amount of time. Therefore, contrast and signal can be increased while using a shorter TR. This pulse type can be applied to other sequences like FSE, GE or IR.

Sequences with driven equilibrium:
Driven Equilibrium Fast Gradient Recalled acquisition in the steady state - DE FGR,
Driven Equilibrium Fourier Transformation - DEFT,
Driven Equilibrium magnetization preparation - DE prep,
Driven Equilibrium Fast Spin Echo - DE FSE.
 
Images, Movies, Sliders:
 MRI of the Skull Base  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Driven Equilibrium' (8).Open this link in a new window

 
Further Reading:
  Basics:
3D Turbo Spin-Echo Sequence with Motion-Sensitized Driven-Equilibrium Preparation for Detection of Brain Metastases on 3T MR Imaging
Saturday, 3 December 2011   by www.ajnr.org    
  News & More:
Advances in high-field MR imaging of the spine
Wednesday, 5 August 2009   by www.appliedradiology.com    
Comparison of New Methods for Magnetic Resonance Imaging of Articular Cartilage(.pdf)
2002
MRI Resources 
Contrast Agents - Abdominal Imaging - MR Guided Interventions - Jobs - Fluorescence - Blood Flow Imaging
 
DyamideInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Some dyamides are under preclinical development as intravascular MRI contrast agents for blood flow perfusion.

Short name: Dy-DTPA-BMA, generic name: Sprodyamide, central moiety: Dy2+, contrast effect: T2*enhanced, relaxivity: r1=3.4, r2=3.8, B0=0.47,

Short name: Dy-DTPA, central moiety: Dy2+, contrast effect: T2*enhanced,

Short name: Albumin-(Dy-DTPA)x, central moiety: Dy2+, contrast effect: T2*enhanced.
spacer
 
Further Reading:
  Basics:
Dysprosium
   by www.scescape.net    
Searchterm 't2' was also found in the following services: 
spacer
News  (28)  Resources  (5)  Forum  (67)  
 
Fast Imaging with Steady PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(TrueFISP) True fast imaging with steady state precession is a coherent technique that uses a fully balanced gradient waveform. The image contrast with TrueFISP is determined by T2*//T1 properties and mostly depending on TR. The speed and relative motion insensitivity of acquisition help to make the technique reliable, even in patients who have difficulty with holding their breath.
Recent advances in gradient hardware have led to a decreased minimum TR. This combined with improved field shimming capabilities and signal to noise ratio, has allowed TrueFISP imaging to become practical for whole-body applications. There's mostly T2* weighting. With the used ultrashort TR-times T1 weighting is almost impossible. One such application is cardiac cine MR with high myocardium-blood contrast. Spatial and temporal resolution can be substantially improved with this technique, but contrast on the basis of the ratio of T2* to T1 is not sufficiently high in soft tissues. By providing T1 contrast, TrueFISP could then document the enhancement effects of T1 shortening contrast agents. These properties are useful for the anatomical delineation of brain tumors and normal structures. With an increase in SNR ratio with minimum TR, TrueFISP could also depict the enhancement effect in myoma uteri. True FSIP is a technique that is well suited for cardiac MR imaging. The imaging time is shorter and the contrast between the blood and myocardium is higher than that of FLASH.

See Steady State Free Precession.
 
Images, Movies, Sliders:
 Cardiac Infarct 4 Chamber Cine 1  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'Fast Imaging with Steady Precession' (3).Open this link in a new window

 
Further Reading:
  Basics:
Accurate T1 Quantification Using a Breath-hold Inversion Recovery TrueFISP Sequence
2003   by rsna2003.rsna.org    
MRI Resources 
Shoulder MRI - Breast MRI - Bioinformatics - Most Wanted - Online Books - Blood Flow Imaging
 
Fast Relaxation Fast Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(FRFSE, FR-FSE) The fast relaxation fast spin echo sequence provides high signal intensity of fluids even with short repetition times, and can be used with parallel imaging techniques for short breath hold imaging or respiratory gating for free-breathing, high isotropic resolution MR imaging. After signal decay at the end of the echo train, a negative 90° pulse align spins with long T2 from the transverse plane to the longitudinal plane, leading to a much faster recovery of tissues with long T2 time to the equilibrium and thus better contrast between tissues with long and short T2.
Fast relaxation FSE has advantages also for volumetric imaging as the TR can be substantially reduced and thus the scan time. The sequence can be post processed with maximum intensity projection, surface or volume rendering algorithms to visualize anatomical details in brain or spine MRI. Cerebro spinal fluid pulsation artifacts, often problematic in the cervical or thoracic spine may be reduced by radial sampling, in particular when combined with acquisitions of the PROPELLER type.

See also Fast spin echo, Driven Equilibrium.
 
Images, Movies, Sliders:
 Shoulder Sagittal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Shoulder Axial T2 FatSat FRFSE  Open this link in a new window
 Shoulder Coronal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
MRI Resources 
Research Labs - MRCP - Service and Support - Colonography - Databases - Guidance
 
previous      26 - 30 (of 158)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]