Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Phase' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Phase' found in 35 terms [] and 251 definitions []
previous     71 - 75 (of 286)     next
Result Pages : [1 2 3 4 5 6 7]  [8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Phase' was also found in the following services: 
spacer
News  (25)  Resources  (11)  Forum  (27)  
 
G-SCANInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.esaote.de/04_kernspin/gscan/gscan.htm From Esaote S.p.A.; Esaote introduced the new G-SCAN at the RSNA in Dec. 2004. The G-SCAN covers almost all musculoskeletal applications including the spine. The tilting gantry is designed for scanning in weight-bearing positions. This unique MRI scanner is developed in line with the Esaote philosophy of creating high quality MRI systems that are easy to install and that have a low breakeven point.
Device Information and Specification
CLINICAL APPLICATION
CONFIGURATION
Spine, extremity, shoulder, flex coil, knee dual phased array, ankle//foot dual phased array, hand//wrist dual phased array
PULSE SEQUENCES
SE, GE, IR, STIR, TSE, 3D CE, GE-STIR, 3D GE, ME, TME, HSE
IMAGING MODES
Single, multislice, volume study, fast scan, multi slab, cine
FOV
100 up to 350 mm, 25 mm displayed
512 x 512
MEASURING MATRIX
256 x 256 maximum
MAGNET TYPE
Permanent
BORE DIAMETER
or W x H
33 cm H, open
POWER REQUIREMENTS
100/110/200/220/230/240 V
STRENGTH
25 mT/m
5-GAUSS FRINGE FIELD
180 cm
Passive
spacer
Searchterm 'Phase' was also found in the following services: 
spacer
Radiology  (17) Open this link in a new windowUltrasound  (77) Open this link in a new window
Ghosting ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Ghosting, ghost
DESCRIPTION
Displaced reduplications of image in phase encoding direction
REASON
Motion, heartbeat, respiration
HELP
Triggering, breath hold, pharmaceuticals to reduce bowel motion
Ghosting artifacts are in the most cases caused by movements (e.g., respiratory motion, bowel motion, arterial pulsations, swallowing, and heartbeat) and appear in the phase encoding direction.
mri safety guidance
Image Guidance
Ghosting artifacts can be reduced by respiratory and cardiac triggering, the use of breath holding pulse sequences, flow compensation or presaturation pulses, depending on their origin. To reduce bowel motion also pharmaceuticals, such as glucagon or scopolamine are useful. This will decrease artifacts from both peristalsis and breathing.

See also Motion Artifact, Phase Encoded Motion Artifact, Cardiac Motion Artifact, and Artifact Reduction - Motion.
spacer

• View the DATABASE results for 'Ghosting Artifact' (5).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
MRI Resources 
Abdominal Imaging - Collections - Shielding - MRI Centers - Examinations - Resources
 
Gradient Motion Rephasing
 
(GMR) The application of strategic gradient pulses can compensate the objectionable spin phase effects of flow motion. That means the reducing of flow effects, e.g. gradient moment nulling of the first order of flow. The simplest velocity-compensated pulse sequence is the symmetrical second echo of a spin echo pulse sequence.
Gradient field changes can be configured in such a way that during an echo the magnetization signal vectors for all pixels have zero phase angle independent of velocities, accelerations etc. of the measured tissue. E.g. the adjustment to zero at the time TE of the net moments of the amplitude of the waveform of the magnetic field gradients with time. The zeroth moment is the area under the curve, the first moment is the 'center of gravity' etc. The aim is to minimize the phase shifts acquired by the transverse magnetization of excited nuclei moving along the gradients (including the effect of refocusing RF pulses), particularly for the reduction of image artifacts due to motion.
Also called Flow Compensation (FC), Motion Artifact Suppression Technique (MAST), Flow motion compression (STILL), Gradient Rephasing (GR), Shimadzu Motion Artifact Reduction Technique (SMART).
spacer

• View the DATABASE results for 'Gradient Motion Rephasing' (2).Open this link in a new window

 
Further Reading:
  Basics:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Searchterm 'Phase' was also found in the following services: 
spacer
News  (25)  Resources  (11)  Forum  (27)  
 
MSK-Extreme™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.onicorp.com/ From ONI Medical Systems, Inc.;
MSK-Extreme™MRI system is a dedicated high field extremity imaging device, designed to provide orthopedic surgeons and other physicians with detailed diagnostic images of the foot, ankle, knee, hand, wrist and elbow, all with the clinical confidence and advantages derived from high field, whole body MRI units. The light weight (less than 650 kg) of the OrthOne System performs rapid patient studies, is easy to operate, has a patient friendly open environment and can be installed in a practice office or hospital, all at a cost similar to a low field extremity machine.
New features include a more powerful operating system that offers increased scan speed as well as a 160-mm knee coil with higher signal to noise ratio, and the option of a CD burner.
Device Information and Specification
CLINICAL APPLICATION
Dedicated extremity imaging
CONFIGURATION
16 cm knee, 18 cm lower extremity;; 12.3 cm upper extremity, additional high resolution v-SPEC Coils: 80 mm, 100 mm, or 145 mm.
SYNCHRONIZATION
No
PULSE SEQUENCES
SE, FSE, GE2D, GE3D, Inversion recovery (IR), Driven Equilibrium, Fat Saturation (FS), STIR, MT, PD, Flow Compensation (FC), RF spoiling, MTE, No Phase Wrap (NPW)
IMAGING MODES
Scout, single, multislice, volume
TR
10-10,000ms; 1ms steps
TE
5-150ms; 1 ms steps
SINGLE/MULTI SLICE
2D less than 200 msec/image
4cm-16cm
2D: 2mm-10mm/.1mm incr.
Up to 1,000x1,000
MEASURING MATRIX
X/Y: 64-512; 2 pixel steps
PIXEL INTENSITY
4,096 grey lvls; 256 lvls in 3D
28cm ID x 50cm L
MAGNET WEIGHT
635 kg
H*W*D
146 x 69 x 84 cm
POWER REQUIREMENTS
115VAC, 1phase, 20A; 208VAC, 3 phase, 30A
COOLING SYSTEM TYPE
LHe with 2 stage cold head
Negligible
STRENGTH
15 mT/m
5-GAUSS FRINGE FIELD
1.25m radial x 1.8m axial
Passive
spacer
 
Further Reading:
  Basics:
MSK Extreme Brochure(.pdf)
   by www.nova-logic.ch    
MSK Extreme Specifications(.pdf)
   by www.nova-logic.ch    
Searchterm 'Phase' was also found in the following services: 
spacer
Radiology  (17) Open this link in a new windowUltrasound  (77) Open this link in a new window
Machine Imperfection ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Machine imperfection, data error
DESCRIPTION
Striped ghosts with a shift of half the field of view
REASON
Non-uniform sampling, phase differences
HELP
Data correction
Machine imperfection-based artifacts manifest themselves due to the fact that the odd k-space lines are acquired in a different direction than the even k-space lines. Slight differences in timing result in shifts of the echo in the acquisition window. By the shift theorem, such shifts in the time domain data then produce linear phase differences in the frequency domain data.
Without correction, such phase differences in every second line produce striped ghosts with a shift of half the field of view, so-called Nyquist ghosts. Shifts in the applied magnetic field can also produce similar (but constant in amplitude) ghosts.
This artifact is commonly seen in an EPI image and can arise from both, hardware and sample imperfections.
A further source of machine-based artifact arises from the need to acquire the signal as quickly as possible. For this reason the EPI signal is often acquired during times when the gradients are being switched. Such sampling effectively means that the k-space sampling is not uniform, resulting in ringing artifacts in the image.
mri safety guidance
Image Guidance
Such artifacts can be minimized by careful setup of the spectrometer and/or correction of the data. For this reasons reference data are often collected, either as a separate scan or embedded in the imaging data. The non-uniform sampling can be removed by knowing the form of the gradient switching. It is possible to regrid the data onto a uniform k-space grid.
spacer

• View the DATABASE results for 'Machine Imperfection Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
MRI Resources 
Resources - Colonography - MRI Centers - Mobile MRI Rental - Contrast Agents - Software
 
previous      71 - 75 (of 286)     next
Result Pages : [1 2 3 4 5 6 7]  [8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 4 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]