Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'paramagnetic' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'paramagnetic' found in 10 terms [] and 91 definitions []
previous     6 - 10 (of 101)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'paramagnetic' was also found in the following services: 
spacer
News  (9)  Resources  (5)  Forum  (3)  
 
Ultrasmall Superparamagnetic Iron OxideInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(USPIO) The class of the ultrasmall superparamagnetic iron oxide includes several chemically and pharmacologically very distinct materials, which may or may not be interchangeable for a specific use. Some ultrasmall SPIO particles (median diameter less than 50nm) are used as MRI contrast agents (Sinerem®, Combidex®), e.g. to differentiate metastatic from inflammatory lymph nodes. USPIO shows also potential for providing important information about angiogenesis in cancer tumors and could possibly complement MRI helping physicians to identify dangerous arteriosclerosis plaques.
Because of the disadvantageous large T2*//T1 ratio, USPIO compounds are less suitable for arterial bolus contrast enhanced magnetic resonance angiography than gadolinium complexes. The tiny ultrasmall superparamagnetic iron oxides do not accumulate in the RES system as fast as larger particles, which results in a long plasma half-life. USPIO particles, with a small median diameter (less than 10 nm), will accumulate in lymph nodes after an intravenous injection by e.g. direct transcapillary passage through endothelial venules. Once within the nodal parenchyma, phagocytic cells of the mononuclear phagocyte system take up the particles.
As a second way, USPIOs are subsequently taken up from then interstitium by lymphatic vessels and transported to regional lymph nodes. A lymph node with normal phagocytic function takes up a considerable amount and shows a reduction of the signal intensity caused by T2 shortening effects and magnetic susceptibility. Caused by the small uptake of the USPIOs in metastatic lymph nodes, they appear with less signal reduction, and permit the differentiation of healthy lymph nodes from normal-sized, metastatic nodes.

See also Superparamagnetic Contrast Agents, Superparamagnetic Iron Oxide, Very Small Superparamagnetic Iron Oxide Particles, Blood Pool Agents, Intracellular Contrast Agents.
spacer
 
• Related Searches:
    • Superparamagnetism
    • Liver Imaging
    • Very Small Superparamagnetic Iron Oxide Particles
    • Hepatobiliary Contrast Agents
    • Reticuloendothelial Contrast Agents
 
Further Reading:
  Basics:
Comparison of Two Superparamagnetic Viral-Sized Iron Oxide Particles Ferumoxides and Ferumoxtran-10 with a Gadolinium Chelate in Imaging Intracranial Tumors
2002   by www.ajnr.org    
  News & More:
Optimized Labelling of Human Monocytes with Iron Oxide MR Contrast Agents
Sunday, 30 November 2003   by rsna2003.rsna.org    
10 SUMMARY AND FUTURE PERSPECTIVES
   by dissertations.ub.rug.nl    
MRI Resources 
MRI Technician and Technologist Schools - Societies - Fluorescence - MRI Technician and Technologist Career - Liver Imaging - DICOM
 
Gastrointestinal Paramagnetic Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Paramagnetic substances, for example Gd-DTPA solutions, are used as MRI oral contrast agents in gastrointestinal imaging to depict the lumen of the digestive organs. Different Gd-DTPA solutions or zeolites containing gadolinium can be used e.g., for diagnosis of delayed gastric emptying, diagnosis of Crohn's disease etc.
Low concentrations of gastrointestinal paramagnetic contrast agents cause a reduction in T1 relaxation time; consequently, these agents act on T1 weighted images by increasing the signal intensity of the bowel lumen. High concentrations cause T2 shortening by decreasing the signal, similar to superparamagnetic iron oxide. Gd-DTPA chelates are unstable at the low pH in the stomach, therefore buffering is necessary for oral use.

See also Gadopentetate Gastrointestinal, Gadolinium Zeolite, Negative Oral Contrast Agents, Gastrointestinal Superparamagnetic Contrast Agents, and Ferric ammonium citrate.
 
Images, Movies, Sliders:
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Gastrointestinal Paramagnetic Contrast Agents' (5).Open this link in a new window

MRI Resources 
Universities - Education pool - Shielding - Most Wanted - Education - Software
 
Very Small Superparamagnetic Iron Oxide ParticlesInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
(VSOP) A new class of contrast agents with smaller particle size than SPIO or USPIO with advantages for MR angiography, caused through a longer plasma half-life.

See also Ultrasmall Superparamagnetic Iron Oxide and Superparamagnetic Iron Oxide.
spacer

• View the DATABASE results for 'Very Small Superparamagnetic Iron Oxide Particles' (3).Open this link in a new window

Searchterm 'paramagnetic' was also found in the following services: 
spacer
News  (9)  Resources  (5)  Forum  (3)  
 
Gastrointestinal Superparamagnetic Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Gastrointestinal (GI) superparamagnetic contrast agents are used in MRI to improve the visualization of e.g., the intestinal tract, the pancreas (see MRCP), etc. Disadvantages are susceptibility artifacts e.g., dependent on delayed imaging or large volumes resulting in artifacts in the colon and distal small bowel loops related to higher concentration of the particles and absorption of the fluid.
Different types of MRI gastrointestinal superparamagnetic contrast agents:
•
Magnetite albumin microsphere

Usually gastrointestinal superparamagnetic contrast media consist of small iron oxide crystals (ferrites), which produce a signal reduction in the stomach and bowel after oral administration. The T2 shortening caused by these particles is produced from the local magnetic field inhomogeneities associated with the large magnetic moments of superparamagnetic particles. Ferrites are iron oxides of the general formula Fe203.MO, where M is a divalent metal ion and may be mixed with Fe3O4 in different preparations. Ferrites can produce symptoms of nausea after oral administration, as well as flatulence and a transient rise in serum iron. Embedding in inert substances reduce side effects by decreasing the absorption and interaction with body tissues. Combining these contrast materials with polymers such as polyethylene glycol or cellulose, or with sugars such as dextrose, results in improved T1 and/or T2 relaxivity compared with that of the contrast agent alone.

See also Negative Oral Contrast Agents, Gastrointestinal Diamagnetic Contrast Agents, Relaxivity, and Combination Oral Contrast Agents.
spacer

• View the DATABASE results for 'Gastrointestinal Superparamagnetic Contrast Agents' (6).Open this link in a new window

 
Further Reading:
  Basics:
Negative GI Contrast Agents
   by www.mritutor.org    
MRI Resources 
Brain MRI - Corporations - Distributors - Spectroscopy pool - Claustrophobia - IR
 
Paramagnetic Chemical Exchange Saturation TransferInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(PARACEST) The alteration of the proton density or total water signal changes contrast and can be detected by the MRI scanner. Paramagnetic chemical exchange saturation transfer contrast agents are based upon the magnetization transfer mechanism.
Lanthanide ion complexes formed with tetra-amide based ligands display unusually slow water exchange kinetics and this feature may be used to alter image contrast by applying a selective presaturation pulse in an imaging sequence. This results in chemical exchange saturation transfer (CEST) from the lanthanide-bound water to bulk water thereby altering image contrast.
Chemical Exchange Saturation Transfer (CEST) agents are a class of contrast agents that could potentially revolutionize the MRI field because of their improved sensitivity and can have a great impact on functional magnetic resonance imaging.
spacer
 
Further Reading:
  Basics:
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
  News & More:
New Brain Imaging Technique Identifies Previously Undetected Epileptic Seizure Sites
Friday, 13 November 2015   by www.newswise.com    
Non-invasive Imaging Method For Diagnosing Osteoarthritis Developed
Friday, 15 February 2008   by www.sciencedaily.com    
MRI Resources 
Resources - Knee MRI - Societies - Contrast Agents - Hospitals - Absorption and Emission
 
previous      6 - 10 (of 101)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]